Лабораторные работы №№1-3 по дисциплине: Дискретная математика
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа No 1.
Задание.
Бинарное отношение R на конечном множестве A: R A2 – задано списком упорядоченных пар вида (a,b), где a,b A. Требования на множество – в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необходимыми пояснениями.
Работа программы должна происходить следующим образом:
1. На вход подается множество A из n элементов и список упорядоченных пар, задающий отношение R (мощность множества, элементы и пары вводятся с клавиатуры).
2. Результаты выводятся на экран (с необходимыми пояснениями) в следующем виде:
а) матрица бинарного отношения размера n ́ n;
б) список свойств данного отношения.
В матрице отношения строки и столбцы должны быть озаглавлены (элементы исходного множества, упорядоченного по возрастанию).
3. После вывода результатов предусмотреть возможность изменения заданного бинарного отношения либо выхода из программы.
Это изменение может быть реализовано различными способами. Например, вывести на экран список пар (с номерами) и по команде пользователя изменить что-либо в этом списке (удалить какую-то пару, добавить новую, изменить имеющуюся), после чего повторить вычисления, выбрав соответствующий пункт меню. Другой способ – выполнять редактирование непосредственно самой матрицы отношения, после чего также повторить вычисления. Возможным вариантом является автоматический пересчет – проверка свойств отношения – после изменения любого элемента матрицы.
Дополнительно: предусмотреть не только изменение отношения, но и ввод нового множества (размер нового множества может тоже быть другим).
Лабораторная работа No 2
Задание.
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение...
Лабораторная работа No3
Задание.
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть предоставлена возможность редактировать исходную матрицу, т.е. изменять исходный граф без выхода из программы. Предусмотреть также возможность изменения количества вершин.
При выполнении работы разрешается (даже рекомендуется!) использовать матрицу бинарных отношений из лабораторной работы No1.
Вход программы: число вершин графа и матрица смежности.
Выход: разбиение множества вершин на подмножества, соответствующие компонентам связности.
Дополнительно:
Заданный граф рассматривать как ориентированный. Выполнять поиск компонент сильной связности.
Задание.
Бинарное отношение R на конечном множестве A: R A2 – задано списком упорядоченных пар вида (a,b), где a,b A. Требования на множество – в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по матрице бинарного отношения, сопровождая необходимыми пояснениями.
Работа программы должна происходить следующим образом:
1. На вход подается множество A из n элементов и список упорядоченных пар, задающий отношение R (мощность множества, элементы и пары вводятся с клавиатуры).
2. Результаты выводятся на экран (с необходимыми пояснениями) в следующем виде:
а) матрица бинарного отношения размера n ́ n;
б) список свойств данного отношения.
В матрице отношения строки и столбцы должны быть озаглавлены (элементы исходного множества, упорядоченного по возрастанию).
3. После вывода результатов предусмотреть возможность изменения заданного бинарного отношения либо выхода из программы.
Это изменение может быть реализовано различными способами. Например, вывести на экран список пар (с номерами) и по команде пользователя изменить что-либо в этом списке (удалить какую-то пару, добавить новую, изменить имеющуюся), после чего повторить вычисления, выбрав соответствующий пункт меню. Другой способ – выполнять редактирование непосредственно самой матрицы отношения, после чего также повторить вычисления. Возможным вариантом является автоматический пересчет – проверка свойств отношения – после изменения любого элемента матрицы.
Дополнительно: предусмотреть не только изменение отношения, но и ввод нового множества (размер нового множества может тоже быть другим).
Лабораторная работа No 2
Задание.
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение...
Лабораторная работа No3
Задание.
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть предоставлена возможность редактировать исходную матрицу, т.е. изменять исходный граф без выхода из программы. Предусмотреть также возможность изменения количества вершин.
При выполнении работы разрешается (даже рекомендуется!) использовать матрицу бинарных отношений из лабораторной работы No1.
Вход программы: число вершин графа и матрица смежности.
Выход: разбиение множества вершин на подмножества, соответствующие компонентам связности.
Дополнительно:
Заданный граф рассматривать как ориентированный. Выполнять поиск компонент сильной связности.
Дополнительная информация
Комментарии: Сдавалась в 2024 году. Зачет по всем трем.
Похожие материалы
Лабораторные работы №№1-3 по дисциплине: Дискретная математика
Aleks
: 26 декабря 2020
Три лабораторных работы по дискретной математике.
Лабораторная работа No 1 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна
150 руб.
Лабораторные работы 1-3 по дисциплине: Дискретная математика. Вариант №20
IT-STUDHELP
: 7 октября 2023
Лабораторная работа 1
Отношения и их свойства
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна построить матрицу бинарного отношения и определить его
900 руб.
Лабораторная работа №1-3 по дисциплине "Дискретная математика". Вариант общий
teacher-sib
: 6 ноября 2018
Лабораторная работа No 1 Отношения и их свойства
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна построить матрицу бинарного отношения и определить е
500 руб.
Дискретная математика. Лабораторная работа № 1
svladislav987
: 16 апреля 2021
Бинарное отношение R на конечном множестве A: RA2 – задано списком упорядоченных пар вида (a,b), где a,bA. Требования на множество – в нём не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию. Если введённое пользователем множество не соответствует этим требованиям, программа должна автоматически привести его к необходимому виду. Программа должна построить матрицу бинарного отношения и определить его свойства: рефлексивность, антирефлексивность, с
200 руб.
Дискретная математика. Лабораторная работа №1
Bodibilder
: 14 марта 2019
Лабораторная работа No 1 Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции (È , Ç , Í , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
После ввода множес
15 руб.
Дискретная математика. Лабораторная работа №1
sibguter
: 5 июня 2018
Тема: Множества и операции над ними
Задание
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После ввода множеств выбирается т
49 руб.
Лабораторная работа № 1. Дискретная математика
Antipenko2016
: 8 января 2017
Лабораторная работа No 1 Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После ввода множеств
150 руб.
Лабораторная работа №1 по дискретной математике
puzirki
: 25 декабря 2013
Работа No 1.Множества и операции над ними
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции ( , \) с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После ввода множеств выбирается тре
200 руб.
Другие работы
Современные технологии программирования. Лабораторная работа № 6 - Интерфейс калькулятора р-ичных чисел
JulDir
: 28 октября 2012
Лабораторная работа № 6
Интерфейс калькулятора р-ичных чисел
Задание
Разработать и реализовать класс «Интерфейс калькулятора р-ичных чисел» тип TClcPnl наследник TForm, используя класс
Object Pascal,
Builder С++.
На Унифицированном языке моделирования UML (Unified Modeling Language) наш класс можно обозначить следующим образом...
39 руб.
ЗАЧЕТ по дисциплине: Алгебра и геометрия
konst1992
: 27 января 2018
Билет № 3
1. Решение систем линейных уравнений методом Крамера и методом Гаусса.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
A(1;0;-2), B(3;2;-2), C(-4;-1;3), D(2;3;1)..
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
50 руб.
Зачет по дисциплине: Цифровая обработка сигналов. Билет №2
IT-STUDHELP
: 14 августа 2020
Билет 2
Исходные данные итогового задания зависят от:
- номера группы, в которой обучается студент (двузначное число),
- две последние цифры пароля студента (двузначное число).
группа 83 пароль 20
1. Дано: аналоговый сигнал
Построить график аналогового сигнала.
Дискретизировать сигнал, если ,
записать , построить график дискретного сигнала,
построить спектр дискретного сигнала.
2. Дано разностное уравнение дискретной цепи.
Изобразить каноническую схему дискретной цепи.
Записать пер
190 руб.
Стаціонарний консольний обертовий електричний кран
GnobYTEL
: 28 ноября 2016
Вибір вантажного гака
Розрахунок елементів підвіски
Визначаємо ККД поліспасту
Вибір редуктора
Перевірка двигуна за часом пуску
Вибір муфти
Визначення гальмівного моменту та вибір гальм
РОЗРАХУНОК МЕХАНІЗМ ПЕРЕСУВАННЯ ВІЗКА
Вибір схеми механізму пересування візка
Визначення максимального тиску на ходове колесо
Вибір ходових коліс
Опір пересування візка
Визначення потужності двигуна, його вибір
Вибір редуктора
Вибір муфт
Вибір гальм
Перевірка двигуна за тривалістю розгону
РОЗРАХУНОК МЕХАНIЗМУ ПОВ
390 руб.