Контрольная работа и Лабораторные работы №№1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №03

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon data.csv
material.view.file_icon lab.c
material.view.file_icon lab1.docx
material.view.file_icon
material.view.file_icon data.csv
material.view.file_icon lab.c
material.view.file_icon lab2.docx
material.view.file_icon
material.view.file_icon lab.c
material.view.file_icon lab3.docx
material.view.file_icon
material.view.file_icon data.csv
material.view.file_icon kontr.c
material.view.file_icon kontr.docx
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Задание

Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля.

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12
3 4 6 6 9 7 5 6 4 2 9 3 7 5

ЛАБОРАТОРНАЯ РАБОТА №1
по дисциплине
«Теория сложности вычислительных процессов и структур»


Задание
Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести ребра остова минимального веса в порядке их присоединения и вес остова.
Номер варианта выбирается по последней цифре пароля.

Вариант 3
0 5 0 9 10 13 18 16 20 21
5 0 20 12 5 4 17 20 10 17
0 20 0 7 18 0 19 6 17 19
9 12 7 0 5 12 14 5 21 25
10 5 18 5 0 19 19 0 20 8
13 4 0 12 19 0 5 21 0 21
18 17 19 14 19 5 0 13 5 0
16 20 6 5 0 21 13 0 11 22
20 10 17 21 20 0 5 11 0 16
21 17 19 25 8 21 0 22 16 0


ЛАБОРАТОРНАЯ РАБОТА №2
по дисциплине
«Теория сложности вычислительных процессов и структур»

Задание
Написать программу, которая по алгоритму Дейкстры (если Ваша фамилия начинается с гласной буквы) или Форда-Беллмана (если Ваша фамилия начинается с согласной буквы) находит кратчайшее расстояние от вершины с номером Вашего варианта до всех остальных вершин связного взвешенного неориентированного графа, имеющего 10 вершин (нумерация вершин начинается с 0).
Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вывести все найденные кратчайшие расстояния и соответствующие им пути (в виде последовательности ребер).
Номер варианта выбирается по последней цифре пароля.

Вариант 3
0 9 8 0 7 4 10 6 6 4
9 0 1 7 8 6 4 8 7 2
8 1 0 8 6 4 0 9 2 4
0 7 8 0 2 0 0 7 3 0
7 8 6 2 0 0 10 7 5 0
4 6 4 0 0 0 6 3 10 0
10 4 0 0 10 6 0 10 2 10
6 8 9 7 7 3 10 0 9 6
6 7 2 3 5 10 2 9 0 11
4 2 4 0 0 0 10 6 11 0


ЛАБОРАТОРНАЯ РАБОТА №3
по дисциплине
«Теория сложности вычислительных процессов и структур»

Задание
Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Написать программу, которая методом динамического программирования формирует набор товаров максимальной стоимости таким образом, чтобы его суммарная масса не превышала заданную грузоподъемность М.
Вывести промежуточные вычисления, сформированный набор, его стоимость и массу.
Номер варианта выбирается по последней цифре пароля.

Вариант 3
Номер товара, i mi сi M
1 7 15 95
2 14 48
3 13 33 52
4 15 50

Дополнительная информация

Оценка: Зачет
Дата оценки: 30.12.2023
Контрольная работа и Лабораторные работы №№1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №03
Задание Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности: M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12]. Размерности матриц считать из файла. Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки. Номер варианта выбирается по последней цифре пароля
User IT-STUDHELP : 30 декабря 2021
900 руб.
promo
Лабораторные работы №№1-3 по дисциплине: Теория сложностей вычислительных процессов и структур. Вариант №03
ЛАБОРАТОРНАЯ РАБОТА №1 по дисциплине «Теория сложности вычислительных процессов и структур» Задание Написать программу, которая по алгоритму Краскала находит остов минимального веса для связного взвешенного неориентированного графа, имеющего 10 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет). Данные считать из файла. Вывести ребра остова минимального веса в порядке их присоединения и вес остова. Номер варианта выбирается по последней цифре пароля. Вариант 3
User IT-STUDHELP : 30 декабря 2021
600 руб.
promo
Теория сложностей вычислительных процессов и структур. Контрольная работа. Вариант 03
Постановка задачи Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц. Размерности матриц считать из файла. На экран вывести промежуточные вычисления и результат. Номер варианта выбирается по последней цифре пароля. Вариант 3 М1[4x2], M2[2x7], M3[7x5], М4[5x6], M5[6x7], M6[7x9], M7[9x4], M8[4x2].
User JulDir : 4 февраля 2012
49 руб.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа № 1. Вариант 03
Цель работы: Написать программу для сортировки массива из 50 элементов методом “пузырьковой” сортировки (Bubble Sort) или прямого выбора (Select Sort) (по вариантам). Массив считать из файла. Вывести на экран трудоемкость метода (количество сравнений). Метод “пузырьковой” сортировки. Массив для сортировки: 292, 334, 172, 615, 45, 212, 136, 401, 274, 167, 566, 807, 495, 817, 457, 103, 309, 156, 480, 877, 528, 367, 967, 618, 547, 903, 258, 172, 33, 79, 601, 902, 199, 654, 11, 693, 233, 150, 774, 1
User wchg : 15 октября 2013
80 руб.
Лабораторная работа № 3 по дисциплине "Теория сложностей вычислительных процессов и структур"
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Форда-Беллмана Написать программу, которая по алгоритму Форда-Беллмана находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 7 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по посл
User 1231233 : 31 января 2012
23 руб.
Теория сложностей вычислительных процессов и структур. Экзамен
Билет №5 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
User 1231233 : 15 апреля 2011
23 руб.
Теория сложности вычислительных процессов и структур 9 вариант
Задание Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности: M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12]. Размерности матриц считать из файла. Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки. Номер варианта выбирается по последней цифре пароля
User Владислав161 : 5 октября 2023
300 руб.
Проект участка осаждения двойного покрытия медь-никель
Описание технологического процесса. Схема технологического процесса. Расчет участка осаждения двойного покрытия медь-никель. Определение фондов рабочего времени. Расчет производственной программы. Расчет времени обработки поверхности детали. Расчет необходимой производительности участка. Расчет конструкции барабана. Расчет габаритов ванны. Энергетика цеха. Поверхность загрузки и силы тока. Баланс напряжения ванны. Расход воды. Расчет расхода материалов. Расчет расхода химикатов. Сводная ведомост
User Aronitue9 : 23 августа 2012
20 руб.
Этапы интродукции древесно-кустарниковых растений в дендрофлору Одессы
Проведен анализ современного состояния и этапов интродукции древесно-кустарниковых растений в дендрофлору Одессы. Выделены раритетные и инвазионно активные виды. История озеленения любого города связана не только с его географическим местоположением и климатическими условиями (которые в основном определяют состав флоры), но и с особенностями его исторического и экономического развития, с практической деятельностью отдельных людей и учреждений. Город Одесса был основана в 1794 году на месте тур
User Qiwir : 17 ноября 2013
10 руб.
Педагогическая диагностика. КР.
Составьте примерную программу педагогической диагностики резуль-татов образовательной деятельности по следующей схеме. 1. Определите примерную ООП, по которой работает Ваша дошкольная образовательная организация. Если Вы не являетесь сотрудником дошкольной образовательной организации, выберите любую примерную ООП из Навигатора образовательных программ дошкольного образования на сайте ФИРО http://www.firo.ru/?page_id=11684 2. Выберите любую из образовательных областей. 3. Выпишите предполагаемые
User studypro3 : 6 января 2020
400 руб.
Логистика. Вариант №1
Три поставщика одного и того же продукта располагают в планируемый период следующими его запасами: первый – А условных единиц, второй – В условных единиц, третий – С условных единиц. Этот продукт должен быть перевезен к трем потребителям, потребности которых равны Д, Е и К условных единиц, соответственно. Необходимо определить наиболее дешевый вариант перевозок, если транспортные расходы на одну условную единицу составляют:
User афкфф : 21 декабря 2014
200 руб.
up Наверх