Контрольная по дисциплине: Математический анализ (часть 2). Вариант 2
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Вариант №2
1. Найти неопределенные интегралы
(sin2x/корень(1+cos^(2)x))dx;
x^(2)cos^(2)xdx;
(1/(x^(4)-1))dx.
2. Вычислить несобственный интеграл или доказать его расходимость
xdx/(x^(2)+1)^(2)
3. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; z=4-x-y; x^(2)+y^(2)=4
4. Вычислить криволинейный интеграл по координатам
(xy-y^(2))dx+xdy,
где LOA - дуга параболы y=2x^(2) от точки O(0,0) до точки A(1,2).
1. Найти неопределенные интегралы
(sin2x/корень(1+cos^(2)x))dx;
x^(2)cos^(2)xdx;
(1/(x^(4)-1))dx.
2. Вычислить несобственный интеграл или доказать его расходимость
xdx/(x^(2)+1)^(2)
3. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; z=4-x-y; x^(2)+y^(2)=4
4. Вычислить криволинейный интеграл по координатам
(xy-y^(2))dx+xdy,
где LOA - дуга параболы y=2x^(2) от точки O(0,0) до точки A(1,2).
Дополнительная информация
Зачет.
2024 год
2024 год
Похожие материалы
Контрольная По дисциплине: «Математический анализ». Часть 2
Галилео
: 2 сентября 2017
1. Вычислить несобственный интеграл или доказать его расходимость.
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3. Вычислить криволинейный интеграл по координатам
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
70 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №2
Учеба "Под ключ"
: 19 октября 2016
Вариант №2
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями: (см. скрин)
3. Вычислить криволинейный интеграл по координатам,
где - дуга параболы от точки до точки. (см. скрин)
4. Найти общее решение дифференциального уравнения первого порядка: (см. скрин)
5. Решить задачу Коши: (см. скрин)
450 руб.
Математический анализ (часть 2). Вариант №2
kot86
: 14 февраля 2019
Дистанционное обучение
Дисциплина «Математический анализ». Часть 2.
Вариант № 2
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
100 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант 3
Учеба "Под ключ"
: 8 декабря 2022
Дистанционное обучение
Дисциплина «Математический анализ». Часть 2.
Вариант № 3
1. Вычислить несобственный интеграл или доказать его расходимость
dx/(X^(2)+x+1)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; z=y^(2); x^(2)+y^(2)=9
3. Вычислить криволинейный интеграл по координатам
(x-1/y)dy,
где Lab - дуга параболы y=x^(2) от точки A(1,1) до точки D(2,4).
4. Найти общее решение дифференциального уравнения первого порядка
(1+x^(2))y`-2xy=(1+
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №8
Учеба "Под ключ"
: 8 декабря 2022
Дистанционное обучение
Дисциплина «Математический анализ». Часть 2.
Вариант № 8
1. Вычислить несобственный интеграл или доказать его расходимость
dx/(x-2)^(2)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0; z=1-y^(2); x=y^(2); x=2y^(2)+1
3. Вычислить криволинейный интеграл по координатам
y^(2)dx+x^(2)dy,
где L - верхняя половина эллипса x=acost, y=bsint, "пробегаемая" по ходу часовой стрелки.
4. Найти общее решение дифференциального уравнени
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2). Вариант №6
Roma967
: 18 августа 2019
Вариант №6
1. Вычислить несобственный интеграл или доказать его расходимость (см. скрин)
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями: z=0, 4z=y^(2), 2x-y=0, x+y=9
3. Вычислить криволинейный интеграл по координатам (см. скрин), где Lов - дуга параболы y=2*корень(x) от точки O(0,0) до точки B(1,2).
4. Найти общее решение дифференциального уравнения первого порядка x^(2)y'=2xy+3
5. Решить задачу Коши xy'=xe^(y/x)+y, y(1)=0
450 руб.
Контрольная работа по дисциплине: Математический анализ (часть 2) вариант 06
rusyyaaaa
: 23 июня 2019
Дисциплина «Математический анализ». Часть 2.
Вариант № 6
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ; ;
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
Контрольная работа по дисциплине Математический анализ (часть 2). Вариант № 6
Alexbur1971
: 10 мая 2019
Контрольная работа
Дисциплина «Математический анализ». Часть 2.
Вариант № 6
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3. Вычислить криволинейный интеграл по координатам
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
200 руб.
Другие работы
Задание №1 по дисциплине «Управление конкурентоспособностью организации»
studypro2
: 2 января 2017
Задание 1 по дисциплине «Управление конкурентоспособностью организации»
Проведите сравнительную характеристику любых пяти кредитов или депозитов из разных банков (5 банков). Оцените конкурентоспособность каждого из банковских продуктов на российском рынке (г. СПб). Сделайте прогноз продаж по указанным кредитам или депозитам на рынке Санкт-Петербурга (какое количество клиентов будет заинтересовано в данных продуктах).
Таблица 1 (пример: кредиты)
Банки: Сбербанк, ВТБ 24, Санкт-Петербург, Райфф
200 руб.
Теплотехника КемТИПП 2014 Задача Б-1 Вариант 81
Z24
: 19 января 2026
m кг воздуха с начальной температурой t1 сжимается от давления р1=0,1 МПа до давления р2. Сжатие происходит по изотерме, адиабате и политропе с показателем политропы n.
Определить для каждого из трех процессов сжатия конечную температуру воздуха, работу, отведенное тепло, изменение внутренней энергии и энтропии воздуха. Изобразить процессы сжатия в p,υ и T,s — диаграммах.
250 руб.
Промышленный переворот в Англии
Aronitue9
: 3 марта 2013
Введение
Англия накануне промышленного переворота
Основные изменения в социально-экономическом развитии Англии второй половины XVIII в.
Социально-экономические последствия промышленной революции.
Заключение
10 руб.
Анализ финансового состояния деятельности организации (на примере ООО ЭнДжиСи) г. Челябинск
DocentMark
: 6 декабря 2012
Теоретические основы оценки финансового состояния предприятия;
Принципы, задачи и методы оценки финансового состояния предприятия
Финансовая отчетность предприятия как информационная база анализа финансовой устойчивости
Анализ и оценка роли обучения в активизации человеческого ресурса на примере ООО «ЭнДжиСи»
Организационно-экономическая характеристика предприятия
Пути укрепления финансового состояния предприятия
Рекомендации по совершенствованию управления товарными запасами и дебиторской задо
15 руб.