Теория вероятностей, математическая статистика и случайные процессы
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача 1. Вероятность появления поломок на каждой из 6 соединительных линий равна 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2. В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3. В типографии имеется 5 печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна 0,4. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше 4.
Задача 2. В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3. В типографии имеется 5 печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна 0,4. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше 4.
Похожие материалы
Теория вероятностей математическая статистика и случайные процессы
Кирилл81
: 26 января 2017
Задача 1 (текст 2): вероятность появления поломок на каждой из k = 4 соединительных линий равна p = 0,1. Какова вероятность того, что хотя бы две линии исправны?
Решение:
В данном случае имеется последовательность испытаний по схеме Бернулли, т.к. испытания независимы, и вероятность успеха (соединительная линия будет исправна) р=1-0,1=0,9 одинакова во всех испытаниях. Тогда по формуле Бернулли при n=4, р=0,9, q=1-p=1-0,9=0,1
80 руб.
Теория вероятностей и математическая статистика, и случайные процессы
style2off
: 12 января 2016
Задача 1.Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове?
Задача2.В одной урне 5 белых шаров и 2 чёрных шара, а в другой – 4 белых и 4 чёрных. Из первой урны случайным образом вынимают 3 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шара. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача3.В типографии имеется7печатных машин. Для каждой машины вероятность т
800 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Контрольная работа. Вариант 9,
По дисциплине: Теория вероятностей, математическая статистика и случайные процессы
Задача 1
Вероятность появления поломок на каждой из 4 соединительных линий равна 0,25. Какова вероятность того, что хотя бы две линии исправны?
200 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Билет № 9
1. Тема: Независимость событий.
Задача: Монету подбросили два раза. События: А – первый раз выпал герб, В– число выпавших гербов больше числа выпавших цифр. Зависимы ли эти события?
2. Тема: Мат. ожидание непрерывной с.в.
Задача: Случайная величина задана плотностью распределения. Найти её мат. ожидание.
150 руб.
Теория вероятностей математическая статистика и случайные процессы. Вариант №5
majik
: 14 мая 2015
Задание 1
Вероятность появления поломок на каждой из k = 4 соединительных линий равна p = 0,3. Какова вероятность того, что хотя бы две линии исправны?
Задание 2
В одной урне K=4 белых шаров и L=3 чёрных шаров, а в другой – M=5 белых и N=3 чёрных. Из первой урны случайным образом вынимают P=3 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R=2 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
120 руб.
Теория вероятностей. Математическая статистика и случайные процессы. Вариант №3
alexxxxxxxela
: 5 января 2014
Задача 1.
Вероятность появления поломок на каждой из k = 6 соединительных линий равна p = 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2.
В одной урне K=5 белых шаров и L=3 чёрных шаров, а в другой – M=4 белых и N=5 чёрных. Из первой урны случайным образом вынимают P =2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R=4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3.
В типографии имеется K=5 печат
160 руб.
Теория вероятностей. Математическая статистика и случайные процессы. Билет № 13
alexxxxxxxela
: 5 января 2014
Билет № 13:
1. Тема: Схема Бернулли.
Задача: Вероятность того, что телевизор проработает гарантийный срок без поломки, равна 0.8. Закупили 4 телевизора. Какова вероятность того, что три телевизора не проработают гарантийный срок?
2. Тема: Дискретные с.в.
Задача: Вероятность попадания в цель для некоторого стрелка равна 0,75. Какова вероятность того, что для первого попадания в цель ему потребуется три выстрела?
100 руб.
Теория вероятности, математическая статистика и случайные процессы. Билет №7
migsvet
: 7 апреля 2012
Билет № 7
1. Тема: Произведение событий.
Задача: Студент знает 10 вопросов из 30. В билете 3 вопроса. Найти вероятность того, что он знает все три вопроса.
2. Тема: Квантиль.
Задача: Случайная величина задана плотностью распределения. Найти квантиль порядка 0,8.
100 руб.
Другие работы
Теория сложностей вычислительных процессов и структур. Лабораторная работа №1 (вариант 6)
dryan
: 4 декабря 2012
Написать программу для сортировки массива из 50 элементов методом “пузырьковой” сортировки (Bubble Sort) или прямого выбора (Select Sort) (по вариантам). Массив считать из файла. Вывести на экран трудоемкость метода (количество сравнений).
Метод прямого выбора.
50 руб.
Курсовой проект. Проект цифровой радиорелейной линии. Вариант 03
Помощь студентам СибГУТИ ДО
: 11 сентября 2015
Задание на курсовой проект
1. Определить число пролетов ЦРРЛ, рассчитать их длины, составить структурную схему радиорелейной линии.
2. Привести краткую характеристику используемой аппаратуры.
3. Разработать схему организации связи
4. Рассчитать устойчивость связи с учетом конфигурации системы.
5. Рассчитать диаграмму уровней сигналов на ЦРРЛ.
Исходные данные
Длина РРЛ, км............................................................. 70
Объем информации (каналы тч или цифровые потоки).......
550 руб.
Курсовая по проектированию и эксплуатации сетей связи. 3-й вар.
smax24
: 10 марта 2016
Курсовой проект по ПиСС.
вариант 3
условия: 03 3100 4000 9500 12500 10000
Специальность МТС
Сдана в феврале 2016 года
250 руб.
Гидравлика гидравлические машины и гидроприводы Задача 5 Вариант 1
Z24
: 17 ноября 2025
Вертикальная цилиндрическая цистерна с полусферической крышкой до самого верха заполнена жидкостью, плотность которой ρ. Диаметр цистерны D, высота её цилиндрической части H. Манометр M показывает манометрическое давление рм. Определить силу, растягивающую болты А, и горизонтальную силу, разрывающую цистерну по сечению 1-1. Силой тяжести крышки пренебречь. Векторы сил показать на схеме.
200 руб.