Теория вероятностей и математическая статистика
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Экзамен
По дисциплине: Теория вероятностей, СибГУТИ, билет 17.
1. Непрерывная двумерная случайная величина и её распределение.
2. Случайная точка (X,Y) имеет равномерное распределение в области {0<x<2, 1<y<1}. Найти коэффициент корреляции Rxy.
3. Из колоды в 36 карт извлекают четыре карты. Какова вероятность, что все они одной масти?
4. Случайная величина Х распределена по нормальному закону с mx=40 и Dx=200. Найти вероятность попадания случайной величины в интервал (30;80).
5. В каждой из двух урн содержится 8 черных и 2 белых шара. Из второй урны наудачу извлечен один шар и переложен в первую. Найти вероятность того, что шар, извлеченный из первой урны, окажется черным.
По дисциплине: Теория вероятностей, СибГУТИ, билет 17.
1. Непрерывная двумерная случайная величина и её распределение.
2. Случайная точка (X,Y) имеет равномерное распределение в области {0<x<2, 1<y<1}. Найти коэффициент корреляции Rxy.
3. Из колоды в 36 карт извлекают четыре карты. Какова вероятность, что все они одной масти?
4. Случайная величина Х распределена по нормальному закону с mx=40 и Dx=200. Найти вероятность попадания случайной величины в интервал (30;80).
5. В каждой из двух урн содержится 8 черных и 2 белых шара. Из второй урны наудачу извлечен один шар и переложен в первую. Найти вероятность того, что шар, извлеченный из первой урны, окажется черным.
Дополнительная информация
Оценена на 4. Особых замечаний преподавателя нет. Сдано сентябрь 2010 г.
Похожие материалы
Теория вероятностей и математическая статистика
Dirol340
: 11 декабря 2022
Задание 1.
Сколько 4-х буквенных слов можно составить из букв слова УКУС?
Решение: Переставить буквы в слове можно 4! Способами. В слове 2 одинаковые буквы: У – две буквы. Если менять местами эти буквы в конкретной расстановке, то слова будут получаться одинаковые. Следовательно, общее число слов, составленных перестановкой букв из слова УКУС будет равно:
Задание 2.
В автопарке имеются автомобили трех марок, всех поровну. Автомобиль первой марки исправен с вероятностью 0,8, второй марки с
250 руб.
Теория вероятностей и математическая статистика
viktoriya199000
: 16 мая 2022
Задача выполнена в ручную, на бумаге.
50 руб.
Теория вероятностей и математическая статистика
viktoriya199000
: 16 мая 2022
Задача выполнена в ручную, на бумаге
50 руб.
Теория вероятностей и математическая статистика
viktoriya199000
: 16 мая 2022
1. Используя метод максимального правдоподобия, оценить параметры и нормального распределения, если в результате n независимых испытаний случайная величина ξ приняла значения , ,... . Решить задачу с логарифмированием и без логарифмирования.
2. Методом максимального правдоподобия найдите оценку параметра θ, если плотность имеет вид
50 руб.
Теория вероятностей и математическая статистика.
IT-STUDHELP
: 22 ноября 2021
Задача 1.
В 2014 г. выборочное обследование распределения населения города по среднедушевому доходу показало, что 40% обследованных в выборке имеют среднедушевой доход не более 20 тыс. руб. В каких пределах находится доля населения, имеющего такой среднедушевой доход, во всей генеральной совокупности, если объем генеральной совокупности составляет 1000000 единиц, выборка не превышает 10% объема генеральной совокупности и осуществляется по методу случайного бесповторного отбора, а доверительная
600 руб.
Теория вероятностей и математическая статистика
svladislav987
: 9 ноября 2021
Задача No1 (Текст 1)
Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове?
Дано:
p=0,7; k=5.
Задача No2 (Текст 3)
В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Дано:
K=5; L=2; M=4; N=4; P=3
100 руб.
Теория вероятностей и математическая статистика
abuev
: 7 сентября 2021
Вопрос 1.
Термин «достоверное событие» используется для определения события...
Варианты ответа:
вероятность которого равна 1.
дополнение к которому пусто.
которое может произойти.
вероятность которого равна 0.
_______________________________________________________________________
Вопрос 2.
Вероятность того, произойдет одно из двух противоположных событий равна...
Варианты ответа:
сумме вероятностей этих событий.
произведению вероятностей этих событий .
0.
1.
___________________
400 руб.
Теория вероятностей и математическая статистика
GFox
: 20 июля 2021
Задача 1. Текст 2. Вероятность появления поломок на каждой из k соединительных линий равна p. Какова вероятность того, что хотя бы две линии исправны?
p = 0,8, k = 3. Задача 2. Текст 3. В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые. K = 5, L = 5, P = 2, M = 4, N
180 руб.
Другие работы
Расчет элементов автомобильных гидросистем МАМИ Задача 1.7 Вариант Д
Z24
: 17 декабря 2025
Определить показание манометра рм*, если к штоку неподвижного поршня приложена сила F, его диаметр D, высота Н, плотность жидкости ρ=800кг/м³. (Величины Н, D и F взять из таблицы 1).
150 руб.
Химия радиоматериалов. Контрольная работа. Вариант №4
MN
: 9 января 2014
Задача No 3.1.1
Определить падение напряжения в линии электропередач длиной L при температуре Т1, Т2, Т3 , если провод имеет сечение S и по нему течет ток I.
Задача No 3.1.2
Определить длину проволоки для намотки проволочного резистора с номиналом R, и допустимой мощностью рассеяния P.
Задача 3.2.1
Определить концентрацию электронов и дырок в собственном и примесном полупроводнике, содержащем N атомов примеси при комнатной температуре.
Задача 3.2.2
Образец полупроводникового материала легирован
180 руб.
Теоретическая механика СамГУПС Самара 2020 Задача К1 Рисунок 8 Вариант 8
Z24
: 9 ноября 2025
Кинематика плоских механизмов
Плоский кривошипно-шатунный механизм связан с системой зубчатых колес, насаженных на неподвижные оси, которые приводятся в движение ведущим звеном (зубчатая рейка – схема К1.0; рукоятка – схема К1.1; груз на нити – схема К1.2 и т. д.). Рукоятка О1А и кривошип О2С жестко связаны с соответствующими колесами. Длина кривошипа О2С = L1, шатуна CD = L2.
Схемы механизмов приведены на рис. К1.0 – К1.9, а размеры и уравнения движения точки А ведущего звена S = f (t) –
600 руб.
Общая теория связи. Экзаменационная работа. Билет №22.
Tech_Assistant
: 14 ноября 2016
Вопрос 1. Энергетический спектр случайного процесса.
Теорема Хинчина-Винера.
Вопрос 2. Метод дискретного накопления.
Энергетический выигрыш по сравнению с методом однократного отсчета.
350 руб.