Теория сложностей вычислительных процессов и структур. Экзамен
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет №5
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
Похожие материалы
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
aikys
: 18 июня 2016
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
60 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Теория сложности вычислительных процессов и структур, экзамен, билет №7
Светлана59
: 31 марта 2023
Билет 7
С помощью алгоритма Форда – Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности (0 означает, что соответствующей дуги нет).
а b c d E f
0 0 4 0 0 5 3
1 4 0 7 2 4 4
2 0 7 0 6 1 5
3 0 2 6 0 4 7
4 5 4 1 4 0 3
5 3 4 5 7 3 0
300 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6
Lele911
: 22 мая 2022
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданну
150 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №13.
DArt
: 12 апреля 2022
1. С помощью алгоритма Дейкстры найти кратчайшие расстояния от вершины 0 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Оптимальным образом расставить скобки при перемножении следующих матриц:
M1[3*5],M2[5*2],M3[2*8],M4[8*4],M5[4*7]
70 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №6.
LowCost
: 1 февраля 2022
Билет №6
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превыша
249 руб.
Теория сложности вычислительных процессов и структур. БИЛЕТ №15. Экзамен.
321
: 22 октября 2019
Задание экзамена на скриншоте.
Билет №15
(Все задачи решаются «вручную»)
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
2. Оптимальным образом расставить скобки при перемножении матриц
М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
200 руб.
Теория сложности вычислительных процессов и структур. Экзамен. Билет №10.
sibguter
: 13 сентября 2019
Оптимальным образом расставить скобки при перемножении следующих матриц:M_1 [4×6],M_2 [6×5],M_3 [5×3],M_4 [3×8],M_5 [8×3].
По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет).
((0&0&6&7&6&0@0&0&1&4&6&2@6&1&0&0&7&4@7&4&0&0&4&3@6&6&7&4&0&7@0&2&4&3&7&0))
119 руб.
Другие работы
Схема крепления скребковая очистная установке газопровода-Чертеж-Оборудование транспорта нефти и газа-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 15 мая 2016
Схема крепления скребковая очистная установке газопровода-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование транспорта нефти и газа-Курсовая работа-Дипломная работа
400 руб.
Техника микропроцессорных систем в многоканальных телекоммуникационных системах. ЛАБОРАТОРНАЯ РАБОТА. ИЗУЧЕНИЕ АМПЛИТУДО-ЧАСТОТНЫХ И ФАЗО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК ОКМ-2
ViktorLV
: 6 июня 2010
ЛАБОРАТОРНАЯ РАБОТА №2
по дисциплине
«Техника микропроцессорных систем в многоканальных телекоммуникационных системах»
ИЗУЧЕНИЕ АМПЛИТУДО-ЧАСТОТНЫХ И ФАЗО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК ОКМ-2
Цель работы: Изучить амплитудо-частотные (АЧХ) и фазочастотные (ФЧХ) характеристики относительного компенсационного метода второго порядка (ОКМ-2).
1.Согласно варианта (Таблица 2), для двух заданных значений коэффициента “С”, рассчитайте значения характеристик АЧХ и ФЧХ минимум в семи точках, выбрав значения.....
100 руб.
Диалектика взаимосвязей целей и решений с примером
Slolka
: 9 апреля 2014
Введение
1.Решения и цели
1.1. Философия и методология принятия решений
1.2. Рациональные решения
2. Влияние принятия решений на цели
2.1. Принятие решений и цели
2.2. Пример взаимосвязи решений и целей
Вывод
Список используемой литературы
Введение
В теории решений термин «альтернатива» означает одно из альтернативных решений, поступков, одно из отношений или вещей, являющихся предметом выбора (один из возможных их вариантов).
В связи с далеко идущим усложнением организационных и личностных реш
Задача №20
anderwerty
: 4 мая 2014
Разница уровней в водохранилище и в реке 15 м. Определить энергию, теряемую водой, если расход потока равен 20 м3/с.
10 руб.