СибГУТИ. Вычислительная математика. Курсовая работа. 4 вариант
Состав работы
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
СОДЕРЖАНИЕ
. ЗАДАНИЕ 3
2. ОПИСАНИЕ АЛГОРИТМА РЕШЕНИЯ 3
2.1. Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка. 4
2.2. Оценка погрешности методом двойного пересчета 5
2.3. Формула Симпсона 6
2.4. Кусочно-линейная интерполяция 6
3. ИСХОДНЫЙ МОДУЛЬ ПРОГРАММЫ 7
4. РЕЗУЛЬТАТЫ РАБОТЫ ПРОГРАММЫ 10
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени.
Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методов Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений функции в промежуточных узлах применить линейную интерполяцию. Вывести решение дифференциального уравнения, результаты интерполяции и количество теплоты.
Номер уравнения выбирается по последней цифре пароля.
В архиве: DOC (10 страниц), EXE
. ЗАДАНИЕ 3
2. ОПИСАНИЕ АЛГОРИТМА РЕШЕНИЯ 3
2.1. Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка. 4
2.2. Оценка погрешности методом двойного пересчета 5
2.3. Формула Симпсона 6
2.4. Кусочно-линейная интерполяция 6
3. ИСХОДНЫЙ МОДУЛЬ ПРОГРАММЫ 7
4. РЕЗУЛЬТАТЫ РАБОТЫ ПРОГРАММЫ 10
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени.
Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методов Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений функции в промежуточных узлах применить линейную интерполяцию. Вывести решение дифференциального уравнения, результаты интерполяции и количество теплоты.
Номер уравнения выбирается по последней цифре пароля.
В архиве: DOC (10 страниц), EXE
Дополнительная информация
Вид работы: Курсовая работа
Оценка:Отлично
Дата оценки: 04.09.2011
Рецензия:замечаний нет.
--------------------------------------------------
СДЕЛАЮ ЛЮБОЙ ВАРИАНТ!
ПИШИТЕ НА ИМЕЙЛ moscow.c-stud@mail.ru
---------------------------------------------------
ВЫПОЛНЯЮ РАБОТЫ ПО РАЗЛИЧНЫМ ПРЕДМЕТАМ
Оценка:Отлично
Дата оценки: 04.09.2011
Рецензия:замечаний нет.
--------------------------------------------------
СДЕЛАЮ ЛЮБОЙ ВАРИАНТ!
ПИШИТЕ НА ИМЕЙЛ moscow.c-stud@mail.ru
---------------------------------------------------
ВЫПОЛНЯЮ РАБОТЫ ПО РАЗЛИЧНЫМ ПРЕДМЕТАМ
Похожие материалы
Вычислительная математика | Лабораторная 4 | вариант 0 | СибГУТИ
eviltosterrr
: 4 марта 2014
Известно, что функция f(x) удовлетворяет условию |f'''(x)|<=c при любом x. Измерительный прибор позволяет находить значения f(x) с точностью 0.0001. Найти наименьшую погрешность, с которой f'(x) можно найти по приближенной формуле: (f'(xi)=f(xi+1)-f(xi-1))/2*h.
Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения f'(x) с наименьшей погрешностью.
60 руб.
Курсовая работа. Вычислительная математика. Вариант №7. ДО СибГУТИ.
Olya
: 9 января 2018
Задание на курсовую работу
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методом Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом
300 руб.
СибГУТИ. Вычислительная математика. Лабораторная работа № 2. 4 вариант.
РешуВашуРаботу
: 3 октября 2011
Привести систему к виду, подходящему для метода простой итерации. Рассчитать анали-тически количество итераций для решения системы линейных уравнений методом простой ите-рации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. ... Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
N – последняя цифра пароля.
В архиве:
300 руб.
СибГУТИ. Вычислительная математика. Лабораторная работа № 3. 4 вариант.
РешуВашуРаботу
: 3 октября 2011
Решение нелинейных уравнений.
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если ... Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля.
В архиве: DOC (решения + листинг
300 руб.
СибГУТИ. Вычислительная математика. Лабораторная работа № 5. 4 вариант.
РешуВашуРаботу
: 3 октября 2011
Одномерная оптимизация
Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2,1⁄4 ),...
N – последняя цифра пароля.
В архиве: DOC (решения + листинг программы), EXE
300 руб.
Курсовая работа. Вычислительная математика. Вариант №4
still65
: 13 мая 2016
СОДЕРЖАНИЕ
1. ЗАДАНИЕ 3
2. ОПИСАНИЕ АЛГОРИТМА РЕШЕНИЯ 3
2.1. Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка. 4
2.2. Оценка погрешности методом двойного пересчета 5
2.3. Формула Симпсона 6
2.4. Кусочно-линейная интерполяция 6
3. ИСХОДНЫЙ МОДУЛЬ ПРОГРАММЫ 7
4. РЕЗУЛЬТАТЫ РАБОТЫ ПРОГРАММЫ 10
50 руб.
Вычислительная математика. Курсовая работа. Вариант №4.
zhekaersh
: 19 июня 2015
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методов Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений
100 руб.
Вычислительная математика. Курсовая работа. Вариант №4
tpogih
: 13 сентября 2014
условие задачи.
Курсовая работа
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле: . Дифференциальное уравнение решить методов Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шаг
70 руб.
Другие работы
Физика. Контрольная работа №4. Вариант №4
zhekaersh
: 20 марта 2015
Квантовая оптика
704. На расстоянии З м друг от друга находятся две лампы силой света 15 и 50 Кд. Определить, где следует поместить экран, между лампами, чтобы он имел одинаковую освещенность с обеих сторон.
714. Определить температуру Т и энергетическую светимость Re абсолютно черного тела, если максимум испускательной способности приходится на длину волны Лm = 600 нм.
724. На фотоэлемент с катодом из лития падает свет с длиной волны Л = 200 нм. Найти наименьшее значение задерживающей разнос
120 руб.
Чертеж дизельного двигателя ДКРН50/191
Laguz
: 8 февраля 2024
Поперечный разрез дизеля ДКРН50/191
Чертеж сделан в 21 компасе и еще сохранен в 11 компас
Есть сборочный чертеж и спецификация
300 руб.
Теоретический анализ психологических особенностей манипулятивной установки в профессиональной деятельности менеджера
Lokard
: 18 октября 2013
Введение
Глава 1. Теоретические основы исследования манипулятивной установки в профессиональной деятельности менеджера
1.1 Понятие манипуляции в психологии
1.1.1 Определение манипуляции
1.1.2 Психологическая манипуляция как вид психологического воздействия (влияния)
1.2 Социальные и культурные предпосылки манипуляции
1.3 Манипулятор как психологический тип личности
1.3.1 Характеристика личности манипулятора и манипулируемого. Причины формирования манипулятивного типа личности
1.3.2 Дестр
10 руб.
Теоретическая механика СамГУПС Самара 2020 Задача К2 Рисунок 1 Вариант 8
Z24
: 9 ноября 2025
Сложное движение точки
По заданному уравнению вращения φ = f1(t) тела А и уравнению движения s = ОМ = f1(t) точки М относительно тела А определить абсолютную скорость и абсолютное ускорение точки М в момент времени t = t1. Схема к задаче и исходные данные к ней определяются в соответствии с шифром по рис. К2.0–К2.9 и таблице К2. Точка М показана в направлении положительного отсчета координаты s. Положительное направление отсчета угла φ указано стрелкой.
250 руб.