Зачет по дисциплине: Алгебра и геометрия. Билет №13
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Сибирский государственный университет телекоммуникаций и информатики
Дистанционное обучение
1 курс 1семестр «Алгебра и геометрия». зачет
БИЛЕТ № 13
1. Теорема Кронекера – Капелли.
2. Взаимное расположение двух прямых в пространстве.
3. Решить матричное уравнение:
4. Найти уравнение параболы с вершиной в начале координат, если парабола симметрична относительно оси Ох и проходит через точку А (–1;3).
5. Найти уравнение плоскости, проходящей через прямые
и .
Дистанционное обучение
1 курс 1семестр «Алгебра и геометрия». зачет
БИЛЕТ № 13
1. Теорема Кронекера – Капелли.
2. Взаимное расположение двух прямых в пространстве.
3. Решить матричное уравнение:
4. Найти уравнение параболы с вершиной в начале координат, если парабола симметрична относительно оси Ох и проходит через точку А (–1;3).
5. Найти уравнение плоскости, проходящей через прямые
и .
Дополнительная информация
2011 зачет
Похожие материалы
Зачет по дисциплине: Алгебра и геометрия. 1-й семестр. Билет № 13
Kaprall
: 17 ноября 2012
1. Теорема Кронекера – Капелли.
2. Взаимное расположение двух прямых в пространстве.
3. Решить матричное уравнение:
4. Найти уравнение параболы с вершиной в начале координат, если парабола симметрична относительно оси Ох и проходит через точку А (–1;3).
5. Найти уравнение плоскости, проходящей через прямые
100 руб.
ЗАЧЕТ по дисциплине: Алгебра и геометрия
konst1992
: 27 января 2018
Билет № 3
1. Решение систем линейных уравнений методом Крамера и методом Гаусса.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
A(1;0;-2), B(3;2;-2), C(-4;-1;3), D(2;3;1)..
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
50 руб.
Экзамен по дисциплине: Алгебра и геометрия. Билет №13
Елена22
: 28 февраля 2016
Билет №13
1. Системы координат на плоскости и связь между ними.
2. Решить матричное уравнение (см. скрин)
3. Найти уравнение плоскости, проходящей через прямые (см. скрин).
300 руб.
Зачет по дисциплине Алгебра и геометрия билет 10
Антон28
: 8 августа 2025
Зачет по дисциплине Алгебра и геометрия
500 руб.
Зачет по дисциплине: Алгебра и геометрия. Билет №6
wertystn
: 23 октября 2018
1. Вектор. Операции над векторами. Коллинеарность и компланарность векторов. Линейная зависимость векторов. Векторный базис. Разложение вектора по базису
2. Решить матричное уравнение
3. Даны векторы
4. Даны координаты вершин пирамиды. Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
70 руб.
Зачет по дисциплине "Алгебра и геометрия". Билет №5
nlv
: 10 сентября 2018
Билет № 5
1. Обратная матрица, ее вычисление и свойства. Матричные уравнения. Решение систем линейных уравнений с помощью обратной матрицы.
2. Решить матричное уравнение.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
A(1;3;-2), B(-1;-3;0), C(0;2;0), D(-1;0;2).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное р
50 руб.
Зачет по дисциплине: Алгебра и геометрия. Билет №1.
teacher-sib
: 16 декабря 2016
1. Матрицы, операции над матрицами. Эквивалентность матриц.
2. Решить матричное уравнение , где
3. Даны векторы .
Найти
4. Даны координаты вершин пирамиды
.
Найти координаты точки пересечения плоскости с высотой пи-рамиды, опущенной из вершины на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго по-рядка, построить кривую, найти фокусное расстояние и эксцентриситет
100 руб.
Зачет по дисциплине: Алгебра и Геометрия. Билет №8.
freelancer
: 21 августа 2016
Билет № 8
1. Плоскость и прямая в пространстве. Виды уравнений плоскости и прямой в пространстве.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
A(1;0;1), B(-1;2;4), C(2;3;1), D(-1;2;1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
100 руб.
Другие работы
Основы телекоммуникаций. 78 вариант. - Резонансы напряжений и тока в электрических цепях
antoxa231
: 15 марта 2025
Контрольная работа №1
«Резонансы напряжений и тока в электрических цепях»
Гусельников - зачёт
250 руб.
Теплотехника 5 задач Задача 1 Вариант 46
Z24
: 3 января 2026
Смесь, состоящая из СО2 и СО, задана массовыми долями (mCO2 и mCO). Имея начальные параметры – давление р1 = 0,5 МПа и температуру t1 = 27 ºС, смесь расширяется при постоянном давлении до объема V2 = ρV1.
Определить газовую постоянную смеси, ее начальный объем V1, параметры смеси в состоянии 2, изменение внутренней энергии, энтальпии, энтропии, теплоту и работу расширения в процессе 1-2, если масса смеси М.
250 руб.
Синергия. Рынок ценных бумаг. Вторичный рынок ценных бумаг - это отношения, складывающиеся ... ценных бумаг при...
ann1111
: 13 июля 2022
Вторичный рынок ценных бумаг - это отношения, складывающиеся ... ценных бумаг при приобретении инвестором
• во время эмиссии
• между эмитентами и владельцами
• в процессе обращения
10 руб.
Теория электрических цепей (часть 2), Лабораторные работы 4,5,6, Вариант № 02
artinjeti
: 28 октября 2018
Лабораторная работа №4
«Исследование реактивных двухполюсников»
1. Цель работы
Исследование зависимости входного сопротивления реактивного двухполюсника от частоты.
2. Подготовка к выполнению работы
При подготовке к работе необходимо изучить теорию реактивных двухполюсников, методы их анализа и синтеза (параграфы 4.5 и 16.6 элек-тронного учебника).
3. Экспериментальная часть
3.1. Схема реактивного двухполюсника (рисунок 1, 2).
E = 1 В, f = 1кГц, R0 = 10 кОм, L1 = L2 = 1 мГн, C1 = 63,536 нФ,
С
150 руб.