Дискретная математика. Контрольная работа.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
No1
Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (AB) \ (AC) = (AB) \C б) (AB)C=(AC)(BC) .
No2
Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,2),(a,3),(a,4),(b,3),(c,2)}; P2 = {(1,1),(1,4),(2,2),(2,3),(3,3),(3,2),(4,1),(4,4)}.
No3
Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P R2, P = {(x,y) | x•y > 1}.
No4
Доказать утверждение методом математической индукции:
(n3 + 11•n) кратно 6 для всех целых n 0.
No5
Бригада из одиннадцати взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее двух человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
No6
Сколько существует положительных трехзначных чисел: а) делящихся на числа 6, 8 или 21? б) делящихся ровно на одно из этих трех чисел?
No7
Найти коэффициенты при a=x3•y2•z2, b=x2•y2•z2, c=x4•z4 в разложении (2•x+3•y+5•z2)6.
No8
Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 3•an+1 + 2•an = 0• и начальным условиям a1=3, a2=7.
No9
Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
No10
Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v2 до остальных вершин графа, используя алгоритм Дейкстры.
Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (AB) \ (AC) = (AB) \C б) (AB)C=(AC)(BC) .
No2
Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,2),(a,3),(a,4),(b,3),(c,2)}; P2 = {(1,1),(1,4),(2,2),(2,3),(3,3),(3,2),(4,1),(4,4)}.
No3
Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P R2, P = {(x,y) | x•y > 1}.
No4
Доказать утверждение методом математической индукции:
(n3 + 11•n) кратно 6 для всех целых n 0.
No5
Бригада из одиннадцати взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее двух человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
No6
Сколько существует положительных трехзначных чисел: а) делящихся на числа 6, 8 или 21? б) делящихся ровно на одно из этих трех чисел?
No7
Найти коэффициенты при a=x3•y2•z2, b=x2•y2•z2, c=x4•z4 в разложении (2•x+3•y+5•z2)6.
No8
Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 3•an+1 + 2•an = 0• и начальным условиям a1=3, a2=7.
No9
Орграф задан матрицей смежности. Необходимо:
а) нарисовать граф;
б) выделить компоненты сильной связности;
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл).
No10
Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;
б) кратчайшее расстояние от вершины v2 до остальных вершин графа, используя алгоритм Дейкстры.
Дополнительная информация
2011год, зачет.
Похожие материалы
Контрольная работа по дискретной математике
ty4ka
: 23 сентября 2020
Вариант 15
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\B) \ C = (A\C) \ B б) (A\B)C=((AB)C)\(BC).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношени
200 руб.
Дискретная математика, контрольная работа
Александра74
: 15 декабря 2019
No1. а) (A\B) (A\C) = A \ (BC) б) (AB)C=(AC)(BC).
No2.Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1.....
No3.Задано бинарное отношение P; найти его область определения и область значений......
No4.Доказать утверждение методом математической индукции:
(7n – 1) кратно 6 для всех целых n 1. ....No10.....
100 руб.
Контрольная работа по дискретной математике
temirovchem
: 9 июня 2019
1.Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
а) б) в) г) д)
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение:
“Если оперативная память правильно установлена в контрольный компьютер, и он при запуске не выдает ошибки при проверке оперативной памяти, то оперативная память исправна”.
3. Для булевой функции найти методом преобразова
100 руб.
Дискретная математика. Контрольная работа
Андрей124
: 11 марта 2019
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
“Если идёт дождь или дует сильный ветер, то погода не подходит для прогулки”.
Для булевой функции f(x,y,z) найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-конт
20 руб.
Контрольная работа дискретная математика
Zalevsky
: 20 марта 2018
Задача 1: Задано универсальное множество и множества . Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
Задача 2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
«Если на небе светит солнце, и не идёт дождь, то погода подходит для пикника»
Задача 3. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить реле
150 руб.
Дискретная математика. Контрольная работа
vANcRY
: 4 апреля 2017
1. Задано универсальное множество U и множества A, B, C, D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
Дано:
U = {a, b, c, d, e, f, g}
A = {a, b, c, d}; B = {c, d, e, f, g}; C = {d, e, f}; D = {f, g}
2. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение:
“Если студент и экзаменатор не понимают друг друга, то студент не готов или пришёл не на тот экзамен”.
100 руб.
Контрольная работа по Дискретной математике
evgentys90x
: 13 марта 2017
Контрольная работа по Дискретной математике. Вариант № 5. Иркутский национальный исследовательский технический университет. 2016 г, оценка 4. преподаватель носырева л.л. заочно-вечерний факультет, информационные технологии, автоматизированые системы управления. без титульника, электронно вычеслительные машины, 2 курс. Экзамен. Кафедра кибернетики. Формат работы в pdf, листов в контрольной работе 19, темы множества, графы, отношения, функции, булевые функции
300 руб.
Дискретная математика. Контрольная работа
Дмитрий1992
: 27 февраля 2014
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение.
III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему.
IV. Орграф задан своей матрицей смежности. Следует:
а) нарисовать орграф;
б) най
50 руб.
Другие работы
Инфекционные осложнения заболеваний, ранений и травм
DocentMark
: 29 января 2013
1. Этиология
Инфекция у больных, раненых и пострадавших представляет собой реакцию организма на внедрение возбудителей. Далеко не всегда микробная контаминация (микробиологическое событие - МБС, микробное загрязнение) приводит к развитию инфекционного процесса. Это определяется целым рядом аспектов, в том числе типом и вирулентностью возбудителя, местным состоянием раны, иммунным статусом пациента и состоятельностью других компенсаторных реакций, особенно системы кровообращения. В качестве основ
Лабораторная работа №2. Программирование алгоритмов линейной и разветвляющейся структуры Вариант 01 (Семестр 2)
Алексей153
: 2 мая 2015
Вариант 01
Лабораторная работа №2
Программирование алгоритмов циклической структуры и обработка статических массивов
Задание 1. Составьте 3 варианта программ циклической структуры типа for , while, do…while и сравните полученные результаты.
Задание 2. Даны вещественные числа a, b. Значения функции (согласно вариантам) записать в массив. Вычислить значение интеграла, используя:
1) Формулу трапеций
I1=h*[f(a)/2+f(a+h)+f(a+2h)+…+f(a+(n-1)h)+f(b)/2]
2) Формулу Симпсона
I2=h/3*(f(a)+f(b)+4*(f(a+h
80 руб.
Резьбовое соединение. Сборочный чертеж и спецификация - САФУ Р4_19
djon237
: 23 февраля 2025
Графическая работа No4.
Резьбовое соединение. Сборочный чертеж и спецификация
Задание:
1. По указанным в задании данным измерений, подобрать стандартные значения
номинального диаметра и шага резьбы на Гайке и Винте.
Подбор осуществлять по ГОСТ или со страницы 14 в методичке No2.
2. Подобрать размеры конструктивных элементов резьбы (размер заходной фаски).
Подбор осуществлять по ГОСТ или со страниц 82-83.
РАЗМЕР ФАСКИ БЕРЕТЕ ИЗ ПОСЛЕДНЕГО СТОЛБЦА В ЗАВИСИМОСТИ
ОТ ШАГА РЕЗЬБЫ!
3. На формате А4 в
500 руб.
Сети связи и системы коммутации. Контрольная работа. Вариант №6
SibGUTI2
: 14 октября 2017
Задача 3
Осуществить временную коммутацию между входящей и исходящей ЦЛ при передаче КК. Построить пространственный эквивалент временного коммутатора (32х32).
Задача 4
1. Изобразить схему пространственно – временной коммутации в ЦКП типа «В – П – В» для цифровой системы коммутации.
2. Установить соединение в данном КП, если известны:
N_ВК- номер входящего канала;
N_ВЦЛ- номер входящей цифровой линии;
N_ИК- номер исходящего канала;
N_ИЦЛ- номер исходящей цифровой линии;
N_КПШ- номер канала про
120 руб.