Контрольная работа №1. Вариант №2. Дискретная математика

Цена:
400 руб.

Состав работы

material.view.file_icon 0911EBE2-289C-45AB-9A17-4987B0566C0B.docx
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Вариант 2 
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (AB) \ (AC) = (AB) \C б) (AB)C=(AC)(BC) .
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлексивным, симметричным, антисимметричным, транзитивным. P1 = {(a,1),(a,2),(a,3),(a,4),(b,3),(c,2)}; P2 = {(1,1),(1,4),(2,2),(2,3),(3,3),(3,2),(4,1),(4,4)}.
No3 Задано бинарное отношение P; найти его область определения и область значений. Проверить по определению, является ли отношение P рефлексивным, симметричным, антисимметричным, транзитивным. P R2, P = {(x,y) | x•y > 1}.
No4 Доказать утверждение методом математической индукции:
(n3 + 11•n) кратно 6 для всех целых n 0.
No5 Бригада из одиннадцати взломщиков одновременно выходит на грабеж трех разных магазинов. Сколькими способами они могут разделиться, если в каждой группе должно быть не менее двух человек? Сколькими способами их после задержания могут рассадить по четырем одинаковым камерам (не менее чем по одному в каждую)?
No6 Сколько существует положительных трехзначных чисел: а) делящихся на числа 6, 8 или 21? б) делящихся ровно на одно из этих трех чисел?
No7 Найти коэффициенты при a=x3•y2•z2, b=x2•y2•z2, c=x4•z4 в разложении (2•x+3•y+5•z2)6.
No8 Найти последовательность {an}, удовлетворяющую рекуррентному соотношению an+2 – 3•an+1 + 2•an = 0• и начальным условиям a1=3, a2=7.
No9 Орграф задан матрицей смежности. Необходимо:  
а) нарисовать граф;  
б) выделить компоненты сильной связности;  
в) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл). 
No10 Взвешенный граф задан матрицей длин дуг. Нарисовать граф. Найти: а) остовное дерево минимального веса;  
б) кратчайшее расстояние от вершины v2 до остальных вершин графа, используя алгоритм Дейкстры.

Дополнительная информация

2020
Дискретная математика. контрольная работа №1. вариант №2
I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение. III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблице истинности построить СКНФ. По минимальной ДНФ построить релейно-контактную схему. IV. Орграф задан своей матрицей смежности. Следует: а) нарисовать орграф; б) найти
User xadmin : 25 октября 2017
45 руб.
Контрольная работа №1 по дискретной математике
Задание 1. Для графа G=(X,U) ( рисунок 1) выполнить следующее: 1.1. Построить: - матрицу смежности; - матрицу инциденций. 1.2. Определить степени для всех вершин {xi} данного графа. (Указать каким способом вычисляли S(xi)). 1.3. а). Подсчитать количество маршрутов длиной в графе G=(X,U). б). Построить все длиной , связывающие вершины хi и хk ( помечены * ).' Маршруты записать в форме: =( хi ,... хt ,..., хk), где p номер маршрута. Примечание. Для выполнения п.1.3а) составить про
User a-cool-a : 4 мая 2012
100 руб.
Контрольная работа №1 по дискретной математике
Дискретная математика. ФДО ТУСУР. Контрольная работа №1. Вариант №2
Контрольная работа №1 по дисциплине «Дискретная математика – 1» учебное пособие Смыслова З.А. «Спецглавы математики. Часть 1» Вариант №2
User GiveUp : 19 мая 2014
250 руб.
Дискретная математика. ФДО ТУСУР. Контрольная работа №1. Вариант №2
Контрольная работа №1 по дисциплине «Дискретная математика»
Вариант 13 No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) б) (А ́В)È(В ́А)=(С ́D) Þ A=B=C=D. No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 AB, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли отношение P2 рефлекс
User Anza : 8 июля 2019
500 руб.
Контрольная работа №1 по дисциплине «Дискретная математика»
Контрольная работа №1 по дисциплине: «Дискретная математика»
I. Задано универсальное множество U и множества A,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна. а) ; б) ; в) ; г) ; д) .
User kas5360 : 26 ноября 2015
100 руб.
Контрольная работа №1, Дискретная математика, 8-й вариант, 2-й семестр
Вариант № 8 I. Задано универсальное множество и множества Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна. , , , , . а) ; б) ; в) ; г) ; д) .’ II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение. “Если студент и экзаменатор не понимают друг друга, то студент не готов или пришёл не на тот экзамен”. III. Для булевой функции найти методом преобразования минимальную ДНФ. По таблиц
User Andreas74 : 10 октября 2018
120 руб.
Контрольная работа №1, Дискретная математика, 8-й вариант, 2-й семестр
Дискретная математика. Контрольная работа №1. вариант №06. 2-й семестр
I. Задано универсальное множество U и множества A, B, C, D. Найти результаты действий а)-д) и каждое действие проиллюстрировать с помощью диаграмм Эйлера-Венна: II. Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение: «Если студент подготовился к экзамену плохо, то он не решает задачи и не отвечает на вопросы экзаменатора».
User rusyyaaaa : 7 июня 2019
100 руб.
Контрольная работа 1 Дискретная математика Вариант 6
Вариант 6 No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) (A\C) \ (B\C) = (A\B)\C б) (A B) (C D)=(A C) (B D). No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P=(P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, является ли о
User SOKOLOV : 27 октября 2024
184 руб.
Контрольная работа 1 Дискретная математика Вариант 6
ИСТОРИЯ ЭКОНОМИЧЕСКИХ УЧЕНИЙ. РЕФЕРАТ. Сущность меркантилизма, его специфика в разных странах.
1. Введение 2. Сущность меркантилизма 3. Основные экономические идеи меркантилистов 4. Английский меркантилизм 5. Итальянский меркантилизм 6.Французский меркантилизм 7.Список литературы
User ДО Сибгути : 20 февраля 2016
100 руб.
Опыт избирательных кампаний в современной России. 1999-2000 гг.
1. ВВЕДЕНИЕ 2. Избирательная система: понятие 3. Избирательная система: виды 4. Сущность избирательной компании 5. .Цели избирательной кампании 6. Этапы избирательной кампании 7. Заключение 8. Список Литературы Избирательная кампания — сложное и многогранное понятие, которое можно рассматривать с разных сторон.Президентские выборы 2000 г. в отличие от предшествовавших им парламентских выборов, не вызвали ни массового энтузиазма, ни видимой борьбы разных политических сил. По стилистике они кажут
User zok : 16 декабря 2011
Задний мост трактора Беларус-1523 (сборочный чертеж)
Задний мост МТЗ-1523 Беларус состоит из главной передачи, дифференциала с гидроуправляемой фрикционной муфтой блокировки, бортовых передач, расположенных в корпусе заднего моста, и конечных передач, расположенных в рукавах полуосей.
User kreuzberg : 7 июня 2018
590 руб.
Задний мост трактора Беларус-1523 (сборочный чертеж)
АФУ СВЧ-Антенны СВЧ диапазона
Вариант 27 Задача No 1 (варианты 00 – 59) Линейная антенная решетка состоит из n (табл. 1) ненаправленных (изотропных) излучателей, которые расположены на расстоянии d1 / λ друг от друга. Излучатели питаются синфазными токами одинаковой амплитуды. D1=0.4 n=8 ф1=35 Задача No 2а (варианты 00 – 29) Пирамидальная рупорная антенна (рис.1) имеет оптималь-ную длину и возбуждается прямоугольным волноводом на частоте f (табл. 2). Ширина диаграммы направленности в плоскостях Е и Н одинакова, а коэффицие
User gugych : 23 января 2015
800 руб.
up Наверх