Математический анализ. 2-й семестр. Вариант 4
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
A(1;1), a(2;-1)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского.
2 из 4х заданий решены 2мя способами.
Сдана в январе 2012 г. без замечаний
A(1;1), a(2;-1)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского.
2 из 4х заданий решены 2мя способами.
Сдана в январе 2012 г. без замечаний
Дополнительная информация
2012, Сибирский государственный университет информатики и телекоммуникаций
Преподаватель: Агульник Владимир Игоревич
Преподаватель: Агульник Владимир Игоревич
Похожие материалы
Математический анализ (2-й семестр).Контрольная работа. Вариант №4
tpogih
: 4 февраля 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостя
39 руб.
Математический анализ (1-й семестр). Контрольная работа. Вариант №4
tpogih
: 4 февраля 2014
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
y=x2-2; y=2x-2.
30 руб.
Математический анализ. Контрольная работа. 2-й семестр. Вариант № 4
Alexis87
: 30 сентября 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: а) grad z в точке А. б) производную в точке А по направлению вектора a.
A(1;1), a(2;-1)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями z=0, z=y2, x2+y2=9
4. Исследовать сходимость числового ряда
5. Найти интервал сходимост
150 руб.
Контрольная работа По дисциплине: Математический анализ. 2-й семестр. Вариант: №4
SergeyVL
: 27 марта 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
Решение:
1)
Подставляем координаты точки А, тогда ;
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числовог
50 руб.
Экзамен. Математический анализ (2-й семестр).
s-kim
: 9 февраля 2013
1. Линейные дифференциальные уравнения второго порядка, однородные и неоднородные. Структура общего решения.
2. Найти градиент функции в точке
3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже.
4. Исследовать на абсолютную сходимость
5. Данную функцию разложить в ряд Тейлора по степеням х
6. Найти общее решение дифференциального уравнения
7. Найти частное решение уравнения
150 руб.
Экзаменационная работа по математическому анализу. 2-й семестр. Билет №9. Вариант №4
Udacha2013
: 26 февраля 2014
Экзаменационная работа по математическому анализу. Вариант: 4
2 семестр. Билет №9
1. Числовой ряд. Сходимость ряда. Необходимое условие сходимости.
2. Найти градиент функции в точке
.
3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже.
.
4. Найти область сходимости ряда
5. Разложить функцию в ряд Фурье
на отрезке [0,1]
6. Найти общее решение дифференциального уравнения
7. Решить дифференц
280 руб.
Контрольная работа по дополнительным главам математического анализа. (2-й семестр). Вариант № 4
ustianna
: 23 мая 2012
1. Исследовать сходимость числового ряда.
2. Найти интервал сходимости степенного ряда
3. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно.
4. Разложить данную функцию f(x) в ряд Фурье
5. Найти общее решение дифференциального уравнения.
180 руб.
Математический анализ. 2-й семестр. 4-й вариант
Antipenko2016
: 15 мая 2016
3.Вычислить криволинейный интеграл по координатам
2.Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
1.Вычислить несобственный интеграл или доказать его расходимость
4.Найти общее решение дифференциального уравнения первого порядка
5.Решить задачу Коши
100 руб.
Другие работы
Направляющие системы электросвязи. Лабораторная работа №1. Вариант №7
Сергейds
: 24 ноября 2013
ИССЛЕДОВАНИЕ СОБСТВЕННЫХ И ДОПОЛНИТЕЛЬНЫХ ЗАТУХАНИЙ В ОПТИЧЕСКИХ КАБЕЛЯХ СВЯЗИ
Целью работы является проведение компьютерного эксперимента по исследованию собственных и дополнительных затуханий в оптических кабелях связи:
- собственных затуханий;
- затуханий в местах соединений оптических волокон;
- затуханий на микроизгибах и макроизгибах;
ПРОГРАММА ЛАБОРАТОРНОЙ РАБОТЫ
Расчет и построение таблицы зависимости затухания из-за поглощения энергии в материале от длинны волны.
Моделирование и постр
59 руб.
Гидромеханика РГУ нефти и газа им. Губкина Гидродинамика Задача 23 Вариант 8
Z24
: 8 декабря 2025
Решите задачу 22 при условии, что пружина отсутствует.
Задача 22
Через отверстие диаметром d в поршне гидравлического демпфера масло плотностью ρ переливается из нижней полости в верхнюю полость гидроцилиндра под действием внешней нагрузки R. Диаметр гидроцилиндра D, высота поршня l, жесткость пружины с, её поджатие х.
Определить неизвестную величину.
180 руб.
Стенд для притирки форсунок
GTV8
: 15 сентября 2012
Выполнены расчеты по разработатке стенда по притирке клапанов головке блока двигателя, а также выполнены расчеты расчет работы цеха по ремонту топливной аппаратуры дизельных двигателей АТП-2 « БЭСТ-1» .
Автоколонна №1 МПАТП г. Братска осуществляет перевозку пассажиров на городских, пригородных и междугородных маршрутах.
Кроме эксплуатации подвижного состава на данном предприятии вы-полняются все виды технического обслуживания (ТО) и текущего ремонта (ТР) автобусов, грузовых и легковых автомобиле
1500 руб.
Контрольная работа по дисциплине: Разработка вопросов безопасности в проектах. Вариант 23
Roma967
: 12 декабря 2024
Тема: Мероприятия по обеспечению промышленной безопасности опасных производственных объектов. Обеспечение требований промышленной безопасности
Содержание
Введение 3
1. Основные понятия 5
2. Опасные производственные объекты 7
3. Декларация промышленной безопасности 8
4. Раздел 3 «Обеспечение требований промышленной безопасности». 10
5. Мероприятия по обеспечению промышленной безопасности опасных производственных объектов 12
Заключение 14
Список использованных источников 16
Вариант 23:
2. Меро
1000 руб.