Математический анализ. 2-й семестр. Вариант 4
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
A(1;1), a(2;-1)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского.
2 из 4х заданий решены 2мя способами.
Сдана в январе 2012 г. без замечаний
A(1;1), a(2;-1)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского.
2 из 4х заданий решены 2мя способами.
Сдана в январе 2012 г. без замечаний
Дополнительная информация
2012, Сибирский государственный университет информатики и телекоммуникаций
Преподаватель: Агульник Владимир Игоревич
Преподаватель: Агульник Владимир Игоревич
Похожие материалы
Математический анализ (2-й семестр).Контрольная работа. Вариант №4
tpogih
: 4 февраля 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостя
39 руб.
Математический анализ (1-й семестр). Контрольная работа. Вариант №4
tpogih
: 4 февраля 2014
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
y=x2-2; y=2x-2.
30 руб.
Математический анализ. Контрольная работа. 2-й семестр. Вариант № 4
Alexis87
: 30 сентября 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: а) grad z в точке А. б) производную в точке А по направлению вектора a.
A(1;1), a(2;-1)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями z=0, z=y2, x2+y2=9
4. Исследовать сходимость числового ряда
5. Найти интервал сходимост
150 руб.
Контрольная работа По дисциплине: Математический анализ. 2-й семестр. Вариант: №4
SergeyVL
: 27 марта 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
Решение:
1)
Подставляем координаты точки А, тогда ;
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числовог
50 руб.
Экзамен. Математический анализ (2-й семестр).
s-kim
: 9 февраля 2013
1. Линейные дифференциальные уравнения второго порядка, однородные и неоднородные. Структура общего решения.
2. Найти градиент функции в точке
3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже.
4. Исследовать на абсолютную сходимость
5. Данную функцию разложить в ряд Тейлора по степеням х
6. Найти общее решение дифференциального уравнения
7. Найти частное решение уравнения
150 руб.
Экзаменационная работа по математическому анализу. 2-й семестр. Билет №9. Вариант №4
Udacha2013
: 26 февраля 2014
Экзаменационная работа по математическому анализу. Вариант: 4
2 семестр. Билет №9
1. Числовой ряд. Сходимость ряда. Необходимое условие сходимости.
2. Найти градиент функции в точке
.
3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже.
.
4. Найти область сходимости ряда
5. Разложить функцию в ряд Фурье
на отрезке [0,1]
6. Найти общее решение дифференциального уравнения
7. Решить дифференц
280 руб.
Контрольная работа по дополнительным главам математического анализа. (2-й семестр). Вариант № 4
ustianna
: 23 мая 2012
1. Исследовать сходимость числового ряда.
2. Найти интервал сходимости степенного ряда
3. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно.
4. Разложить данную функцию f(x) в ряд Фурье
5. Найти общее решение дифференциального уравнения.
180 руб.
Математический анализ. 2-й семестр. 4-й вариант
Antipenko2016
: 15 мая 2016
3.Вычислить криволинейный интеграл по координатам
2.Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
1.Вычислить несобственный интеграл или доказать его расходимость
4.Найти общее решение дифференциального уравнения первого порядка
5.Решить задачу Коши
100 руб.
Другие работы
ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ИНФОКОММУНИКАЦИОННЫХ СИСТЕМ. Лабораторная 2. Вариант 2.
aleshin
: 2 июля 2023
Лабораторная работа 2
Построение функциональной модели телекоммуникационной системы с
помощью пакета PragmaDev Studio
Цель: Изучить принцип построения функциональной модели системы и алгоритм ее реализации с помощью пакета PragmaDev Studio.
Задание:
1. С помощью раздела 2 в методических указаниях выполнить демонстрационный пример, который реализуете в проекте, сделанном в лабораторной работе 1 с помощью пакета PragmaDev Studio. Созданный проект сохранить для использования при выполнении заданий
162 руб.
Безопасность российской семьи и перспективы развития социальной работы
GnobYTEL
: 24 февраля 2013
Безопасность российской семьи и перспективы развития социальной работы Галина Силласте, профессор социологии, доктор философских наук В российском обществе за последние десять лет немало сделано для становления социальной работы, определения ее теоретических и методических основ, создания организационной и, что особенно важно- кадровой базы. Однако российский опыт развития рыночных отношений, а особенно их социальные последствия для каждой
российской семьи, требуют от нас определенного переосмы
15 руб.
Физико-химические свойства нефти и её фракций
GnobYTEL
: 3 сентября 2012
Рассмотрены физические свойства нефти, газов нефтяных и газовых месторождении; влагосодержание и гидраты природных газов, а также состав и некоторые свойства вод нефтяных и газовых месторождений.
20 руб.