Математический анализ. 2-й семестр. Вариант 4
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
A(1;1), a(2;-1)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского.
2 из 4х заданий решены 2мя способами.
Сдана в январе 2012 г. без замечаний
A(1;1), a(2;-1)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского.
2 из 4х заданий решены 2мя способами.
Сдана в январе 2012 г. без замечаний
Дополнительная информация
2012, Сибирский государственный университет информатики и телекоммуникаций
Преподаватель: Агульник Владимир Игоревич
Преподаватель: Агульник Владимир Игоревич
Похожие материалы
Математический анализ (1-й семестр). Контрольная работа. Вариант №4
tpogih
: 4 февраля 2014
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
y=x2-2; y=2x-2.
30 руб.
Математический анализ (2-й семестр).Контрольная работа. Вариант №4
tpogih
: 4 февраля 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостя
39 руб.
Математический анализ. Контрольная работа. 2-й семестр. Вариант № 4
Alexis87
: 30 сентября 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: а) grad z в точке А. б) производную в точке А по направлению вектора a.
A(1;1), a(2;-1)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями z=0, z=y2, x2+y2=9
4. Исследовать сходимость числового ряда
5. Найти интервал сходимост
150 руб.
Контрольная работа По дисциплине: Математический анализ. 2-й семестр. Вариант: №4
SergeyVL
: 27 марта 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
Решение:
1)
Подставляем координаты точки А, тогда ;
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числовог
50 руб.
Экзамен. Математический анализ (2-й семестр).
s-kim
: 9 февраля 2013
1. Линейные дифференциальные уравнения второго порядка, однородные и неоднородные. Структура общего решения.
2. Найти градиент функции в точке
3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже.
4. Исследовать на абсолютную сходимость
5. Данную функцию разложить в ряд Тейлора по степеням х
6. Найти общее решение дифференциального уравнения
7. Найти частное решение уравнения
150 руб.
Экзаменационная работа по математическому анализу. 2-й семестр. Билет №9. Вариант №4
Udacha2013
: 26 февраля 2014
Экзаменационная работа по математическому анализу. Вариант: 4
2 семестр. Билет №9
1. Числовой ряд. Сходимость ряда. Необходимое условие сходимости.
2. Найти градиент функции в точке
.
3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже.
.
4. Найти область сходимости ряда
5. Разложить функцию в ряд Фурье
на отрезке [0,1]
6. Найти общее решение дифференциального уравнения
7. Решить дифференц
280 руб.
Контрольная работа по дополнительным главам математического анализа. (2-й семестр). Вариант № 4
ustianna
: 23 мая 2012
1. Исследовать сходимость числового ряда.
2. Найти интервал сходимости степенного ряда
3. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно.
4. Разложить данную функцию f(x) в ряд Фурье
5. Найти общее решение дифференциального уравнения.
180 руб.
Математический анализ. 2-й семестр. 4-й вариант
Antipenko2016
: 15 мая 2016
3.Вычислить криволинейный интеграл по координатам
2.Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
1.Вычислить несобственный интеграл или доказать его расходимость
4.Найти общее решение дифференциального уравнения первого порядка
5.Решить задачу Коши
100 руб.
Другие работы
Механика Задача 2.27 Рисунок 7 Вариант 1
Z24
: 18 ноября 2025
Определение реакций опор твёрдого тела
Определить реакции опор А и В плоской балки, если на нее действуют сосредоточенные силы Р1 и Р2, алгебраический момент пары сил М и равномерно распределенная нагрузка интенсивностью q.
200 руб.
Визуальное программирование и человеко-машинное взаимодействие (часть 1)» Вариант 9
Владислав161
: 14 июня 2022
Задание на контрольную работу
по курсу “Языки программирования высокого уровня”:
1. Создать базу данных (БД), состоящую из 2-х заданных таблиц. Поля таблиц произвольные, но не менее четырех полей в каждой таблице, включая ключевое поле (поле типа +(Autoincrement)). В таблицу, которая при объединении будет подчиненной, необходимо включить поле, по которому эта таблица будет связана с первичным ключом главной таблицы.
2.Разработать Приложение для работы с БД, выполняющее следующие основные функц
300 руб.
Разработка инновационного проекта для фирмы ООО ГрадМонолит по оказанию новой услуги
Elfa254
: 6 ноября 2013
Инновация - это нововведение, изменение. Любая инновация – результат принятия решения или целой серии решений. Некоторые изменения навязываются извне, инициаторами других являемся мы сами.
Большое влияние инноваций на хозяйственную деятельность, на производство, поставщиков и потребителей вызывает необходимость управления изменениями. Это и есть инновационный менеджмент.
Осуществление любой предпринимательской деятельности всегда основано на какой-либо идее. Но для инновационного бизнеса прави
10 руб.
Созвездие Ящерица
Lokard
: 12 августа 2013
Про это созвездие придется сказать немногое. Оно содержит лишь одну звезду ярче 4m и всего 35 звезд, доступных невооруженному глазу. Главная звезда альфа - голубой горячий гигант, удаленный от Земли на 28 пк. Ее никак нельзя назвать достопримечательностью, так как подобных ей звезд астрономы насчитывают множество.
Летом 1936 г. член ВАГО Сергей Норман открыл в созвездии Ящерицы новую звезду.
Как и любой "переменщик", Норман отлично знал созвездия. И он сразу обратил внимание на яркую, незнакомую
20 руб.