Математический анализ. 2-й семестр. Вариант 4

Цена:
150 руб.

Состав работы

material.view.file_icon
material.view.file_icon Матан2,КР.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
A(1;1), a(2;-1)

2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).

3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.

4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского.

2 из 4х заданий решены 2мя способами.
Сдана в январе 2012 г. без замечаний

Дополнительная информация

2012, Сибирский государственный университет информатики и телекоммуникаций
Преподаватель: Агульник Владимир Игоревич
Математический анализ (2-й семестр).Контрольная работа. Вариант №4
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. 4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостя
User tpogih : 4 февраля 2014
39 руб.
Математический анализ (2-й семестр).Контрольная работа. Вариант №4
Математический анализ (1-й семестр). Контрольная работа. Вариант №4
Задача 1. Найти пределы функций: Задача 2. Найти значение производных данных функций в точке x=0: Задача 3. Провести исследование функций с указанием а) области определения и точек разрыва; б) экстремумов; с) асимптот. По полученным данным построить графики функций. Задача 4. Найти неопределенные интегралы: Задача 5. Вычислить площади областей, заключённых между линиями: y=x2-2; y=2x-2.
User tpogih : 4 февраля 2014
30 руб.
Математический анализ (1-й семестр). Контрольная работа. Вариант №4
Математический анализ. Контрольная работа. 2-й семестр. Вариант № 4
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: а) grad z в точке А. б) производную в точке А по направлению вектора a. A(1;1), a(2;-1) 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями z=0, z=y2, x2+y2=9 4. Исследовать сходимость числового ряда 5. Найти интервал сходимост
User Alexis87 : 30 сентября 2012
150 руб.
Математический анализ. Контрольная работа. 2-й семестр. Вариант № 4
Контрольная работа По дисциплине: Математический анализ. 2-й семестр. Вариант: №4
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a. Решение: 1) Подставляем координаты точки А, тогда ; 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). 3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. 4. Исследовать сходимость числовог
User SergeyVL : 27 марта 2012
50 руб.
Экзамен. Математический анализ (2-й семестр).
1. Линейные дифференциальные уравнения второго порядка, однородные и неоднородные. Структура общего решения. 2. Найти градиент функции в точке 3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже. 4. Исследовать на абсолютную сходимость 5. Данную функцию разложить в ряд Тейлора по степеням х 6. Найти общее решение дифференциального уравнения 7. Найти частное решение уравнения
User s-kim : 9 февраля 2013
150 руб.
Экзаменационная работа по математическому анализу. 2-й семестр. Билет №9. Вариант №4
Экзаменационная работа по математическому анализу. Вариант: 4 2 семестр. Билет №9 1. Числовой ряд. Сходимость ряда. Необходимое условие сходимости. 2. Найти градиент функции в точке . 3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже. . 4. Найти область сходимости ряда 5. Разложить функцию в ряд Фурье на отрезке [0,1] 6. Найти общее решение дифференциального уравнения 7. Решить дифференц
User Udacha2013 : 26 февраля 2014
280 руб.
Контрольная работа по дополнительным главам математического анализа. (2-й семестр). Вариант № 4
1. Исследовать сходимость числового ряда. 2. Найти интервал сходимости степенного ряда 3. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно. 4. Разложить данную функцию f(x) в ряд Фурье 5. Найти общее решение дифференциального уравнения.
User ustianna : 23 мая 2012
180 руб.
Математический анализ. 2-й семестр. 4-й вариант
3.Вычислить криволинейный интеграл по координатам 2.Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями 1.Вычислить несобственный интеграл или доказать его расходимость 4.Найти общее решение дифференциального уравнения первого порядка 5.Решить задачу Коши
User Antipenko2016 : 15 мая 2016
100 руб.
Плуг ПГП-3-40
Представлен чертеж общего вида плуга ПГП-3-40.
User kurs9 : 20 апреля 2017
390 руб.
Плуг ПГП-3-40
ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ИНФОКОММУНИКАЦИОННЫХ СИСТЕМ. Лабораторная 2. Вариант 2.
Лабораторная работа 2 Построение функциональной модели телекоммуникационной системы с помощью пакета PragmaDev Studio Цель: Изучить принцип построения функциональной модели системы и алгоритм ее реализации с помощью пакета PragmaDev Studio. Задание: 1. С помощью раздела 2 в методических указаниях выполнить демонстрационный пример, который реализуете в проекте, сделанном в лабораторной работе 1 с помощью пакета PragmaDev Studio. Созданный проект сохранить для использования при выполнении заданий
User aleshin : 2 июля 2023
162 руб.
Безопасность российской семьи и перспективы развития социальной работы
Безопасность российской семьи и перспективы развития социальной работы Галина Силласте, профессор социологии, доктор философских наук В российском обществе за последние десять лет немало сделано для становления социальной работы, определения ее теоретических и методических основ, создания организационной и, что особенно важно- кадровой базы. Однако российский опыт развития рыночных отношений, а особенно их социальные последствия для каждой российской семьи, требуют от нас определенного переосмы
User GnobYTEL : 24 февраля 2013
15 руб.
Физико-химические свойства нефти и её фракций
Рассмотрены физические свойства нефти, газов нефтяных и газовых месторождении; влагосодержание и гидраты природных газов, а также состав и некоторые свойства вод нефтяных и газовых месторождений.
User GnobYTEL : 3 сентября 2012
20 руб.
up Наверх