Контрольная работа № 2 по дисциплине: Математический анализ. Вариант №1. 2-й семестр
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3.Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l;— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3.Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l;— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Дополнительная информация
Работа зачтена 6.03.2012
Агульник В.И.
Агульник В.И.
Похожие материалы
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1 (2-й семестр)
Jack
: 19 февраля 2014
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=x^2+xy+y^2; A(1;1), a(2;-1)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
(x^2+y^2)^3=a^2x^2y^2
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0, z=x, y=0, y=4, x=корень(25-y^2)
4. Даны векторное пол
340 руб.
Контрольная работа № 2 по дисциплине: Математический анализ. Вариант: № 6. 1-й семестр
студент-сибгути
: 24 февраля 2013
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
7.6. y=0,25x2; y=2-0,5x.
29 руб.
Контрольная работа №2 по дисциплине: Математический анализ. 2-й семестр. Вариант № 9
58197
: 30 сентября 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями об
60 руб.
Математический анализ. 1-й семестр, вариант №1.
Alexandr1305
: 26 февраля 2019
Вариант No 1
1 Найти пределы
а) б) в) .
2 Найти производные данных функций
а) б)
в) г) .
3 Исследовать методами дифференциального исчисления функцию . Используя результаты исследования, построить её график.
4 Дана функция . Найти все её частные производные второго порядка.
5 Найти неопределенные интегралы
а) б)
в) г) .
60 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1
konst1992
: 27 января 2018
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, ко
130 руб.
Контрольная работа №2 по дисциплине: Математический анализ. вариант №1
konst1992
: 27 января 2018
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
150 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1
xtrail
: 2 апреля 2013
Вариант № 1
Задания:
1. Вычертить область плоскости по данным условиям (см.скрин)
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них. (см.скрин)
3. При помощи вычетов вычислить данный интеграл по контуру. (см.скрин)
300 руб.
Контрольная работа № 2 по дисциплине: «Математический анализ». Вариант: №1
Игуана
: 22 марта 2012
Вычертить область плоскости по данным условиям:
Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
При помощи вычетов вычислить данный интеграл по контуру.
Все с чертежами.
135 руб.
Другие работы
Философия как образ жизни
Lokard
: 18 ноября 2013
Первым, кто употребил слово «философ», был, вероятно, Пифагор. По преданию правитель города Флиунта спросил его, кто он такой. Пифагор ответил: «Философ». Слово это было незнакомо правителю, а Пифагор объяснил его так. «Жизнь, - говорил он, - подобна олимпийским играм: одни приходят на них состязаться, другие - торговать, а самые счастливые - смотреть; так и в жизни - одни рождаются жадными до славы и наживы, между тем, как философы - до одной только истины». Важнейшей в философии становится про
10 руб.
Административное право. 16 промежуточных тестов с ответами. МФПУ "Синергия", МТИ , МОСАП
kolonokus1
: 25 марта 2025
Тест 1
1. Для понятия «органы … власти» характерны следующие три главных признака: управленческий аппарат, выполняемая им управленческая и административная деятельность, а также используемые исполнительно-распорядительные полномочия
2. Принципами государственного … являются планирование, прогнозирование, организация, координирование, надзор и контроль
3. Неверно, что видом социального управления является … управление
4. Государственная власть, согласно Конституции РФ, делится на …
5. Неверно, чт
300 руб.
Правовое урегулирование обращения ценных бумаг
evelin
: 23 марта 2013
Мета і задачі дослідження. В дипломної роботі поставлено мету: на основі ринкових досліджень, теоретичних і методичних основ регулювання ринку цінних паперів і актуального для України зарубіжного досвіду виявити специфіку правового врегулювання обігу цінних паперів, дати пропозиції щодо його розвитку.
Методологічну основу дипломного дослідження склали моделі загальної теорії наукового пізнання, методи системного економічного аналізу, заходи макро- і мікроекономічного аналізу, вітчизняні та зару
15 руб.
Натяжное устройство цепного транспортера - 01.012 СБ
.Инженер.
: 19 сентября 2022
В.А. Леонова, О.П. Галанина. Альбом сборочных чертежей для деталирования и чтения. Вариант 01.012 - Натяжное устройство цепного транспортера. Сборочный чертеж. Деталирование. Модели.
Цепная передача состоит из ведущей и ведомой звездочек и цепи. Так как цепи при работе вытягиваются, то для натяжения цепи используют различные натяжные устройства.
Натяжное устройство, рассматриваемое в задании, обеспечивает натяжение цепи перемещением оси 7, на которой на втулках 16 установлены звездочки 9. Ось 7
400 руб.