Экзамен по дисциплине: Математический анализ. Билет № 14
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
2. Теорема Роля и теорема Лагранжа в дифференциальном исчислении.
Если вещественная функция непрерывна на отрезке и дифференцируема на интервале , принимает на концах этого интервала одинаковые значения, то на этом интервале найдётся хотя бы одна точка, в которой производная функции равна нулю.
Следствие:
Если непрерывная функция обращается в ноль в различных точках, то ее производная обращается в ноль по крайней мере в различных точках, причем эти нули производной лежат в выпуклой оболочке нулей исходной функции. Это следствие легко проверяется для случая действительных корней, однако имеет место и в комплексном случае.
Если вещественная функция непрерывна на отрезке и дифференцируема на интервале , принимает на концах этого интервала одинаковые значения, то на этом интервале найдётся хотя бы одна точка, в которой производная функции равна нулю.
Следствие:
Если непрерывная функция обращается в ноль в различных точках, то ее производная обращается в ноль по крайней мере в различных точках, причем эти нули производной лежат в выпуклой оболочке нулей исходной функции. Это следствие легко проверяется для случая действительных корней, однако имеет место и в комплексном случае.
Похожие материалы
Экзамен по дисциплине: Математический Анализ. Билет №14.
ДО Сибгути
: 27 декабря 2017
БИЛЕТ № 14
1. Линейные дифференциальные уравнения второго порядка, однородные и неоднородные. Структура общего решения.
2. Найти градиент функции в точке
.
3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже.
.
4. Исследовать на абсолютную сходимость
5. Данную функцию разложить в ряд Тейлора по степеням х:
6. Найти общее решение дифференциального уравнения
7. Найти частное решение уравнения
60 руб.
Экзамен по дисциплине: Математический анализ. Билет №14
Arsikk
: 2 апреля 2014
1. Несобственные интегралы: интегралы с бесконечными пределами.
2. Разложение основных элементарных функций по формуле Тейлора.
3. Найти частные производные и функции, заданной неявно
4. Исследовать и построить график функции .
5. Найти интеграл
6. Вычислить интеграл
7. Исследовать сходимость интеграла
8. Найти площадь фигуры, ограниченной линиями
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Математический анализ (1 сем.)
Вид работы: Экзамен
100 руб.
Экзамен по дисциплине: «Математический анализ». Билет №14
parovozz
: 27 ноября 2013
Билет 14
1. Формула Остроградского-Гаусса, её физический смысл.
2. Вычислить объём тела, ограниченного поверхностями
3. Вычислить градиент скалярного поля в точке . Построить градиент и линию уровня поля, проходящую через точку М.
4. Вычислить поток векторного поля через поверхность : , , .
5. Применяя формулу Стокса, вычислить циркуляцию векторного поля по замкнутому контуру С, образованному пересечением плоскости с координатными плоскостями.
30 руб.
Экзамен по дисциплине: Математический анализ. Билет № 14.
Fatony
: 15 июня 2012
Билет № 14
1. Несобственные интегралы: интегралы с бесконечными пределами.
2. Разложение основных элементарных функций по формуле Тейлора.
3. Найти частные производные функции, заданной неявно.
4. Исследовать и построить график функции .
5. Найти интеграл .
6. Вычислить интеграл .
7. Исследовать сходимость интеграла .
8. Найти площадь фигуры, ограниченной линиями
90 руб.
Экзамен по дисциплине: Математический анализ. Билет № 14
karimoverkin
: 14 декабря 2011
Билет 14
1. Формула Остроградского-Гаусса, её физический смысл.
Эта формула Остроградского-Гаусса
100 руб.
Экзамен. Математический анализ. Билет №14
MN
: 26 ноября 2013
1.Формула Остроградского-Гаусса, её физический смысл.
2.Вычислить объём тела, ограниченного поверхностями
3.Вычислить градиент скалярного поля в точке . Построить градиент и линию уровня поля, проходящую через точку М.
4. Вычислить поток векторного поля через поверхность : , , .
5.Применяя формулу Стокса, вычислить циркуляцию векторного поля по замкнутому контуру С, образованному пересечением плоскости с координатными плоскостями.
Полное задание в скринах.
2013 г.
Оценка - хорошо.
100 руб.
Экзамен. Математический анализ. Билет 14
sanco25
: 14 февраля 2012
1. Линейные дифференциальные уравнения второго порядка, однородные и неоднородные. Структура общего решения.
2. Найти градиент функции в точке.
3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже.
4. Исследовать на абсолютную сходимость.
5. Данную функцию разложить в ряд Тейлора по степеням х:
6. Найти общее решение дифференциального уравнения
7. Найти частное решение уравнения.
130 руб.
Математический анализ. часть 2-я. Экзамен. билет №14
av2609l
: 28 декабря 2017
1. Линейные дифференциальные уравнения второго порядка, однородные и неоднородные. Структура общего решения
2. Найти градиент функции f(x,y) в точке M(1;1)
z=x^2-8xy+8y^2+3
3. Изменить порядок интегрирования. Область интегрирования изобразить на чертеже.
4. Исследовать на абсолютную сходимость
1-1/(2∙5)+1/(2∙5^2 )+1/(2∙5^3 )+⋯=∑_(n=1)^∞▒(-1)^(n+1)/(n∙5^(n-1) )
5. Данную функцию разложить в ряд Тейлора по степеням х: f(x)=x^3 sin x^2
6. Найти общее решение дифференциального
70 руб.
Другие работы
Контрольная по дисциплине: Межкультурные коммуникации в профессиональной деятельности. Вариант 05
xtrail
: 15 августа 2024
Вариант 05.
Тема: «Невербальные каналы в межкультурной коммуникации. Проксемика»
Содержание
Введение 3
1. Сущность проксемики 4
2. Функции и средства проксематического поведения 8
3. Принципы организации пространства коммуникантов 10
Заключение 13
Список использованных источников 14
400 руб.
Кривые поверхности №2229 2005 года. Вариант №23. РУТ (МИИТ)
werchak
: 9 февраля 2021
Методические указания к выполнению работы по начертательной геометрии
Для студентов всех институтов университета кроме ИПСС
При рассмотрении примеров «Взаимное пересечение поверхностей», поверхности на ортогональном чертеже были заданы линиями их очертания. Однако, следует напомнить что поверхности на ортогональном чертеже могут задаваться аксонометрическими проекциями или геометрической частью определителя, который записывается в квадратных скобках и является набором постоянных геометрических
550 руб.
Основы теории систем связи с подвижными объектами
terminator
: 16 марта 2017
Исходные данные:
Вариант Стандарт f
МГц F
МГц PT
% Pb тыс. дБ дБВт S
км2
м
1 NMT 450 2.5 10 0.01 100 8 -123 450 30
Определить параметры сотовой сети для небольшого города и мощность передатчика базовой станции , необходимую для обеспечения заданного качества связи.
Контрольная работа по дисциплине: Сетевые технологии беспроводной передачи данных. Вариант 35
Roma967
: 12 декабря 2024
Контрольная работа
«Современные телекоммуникационные системы»
Внимание! Вариант определяется по 2-м последним цифрам пароля
Задание 1
Определить среднее значение величины битовой скорости в локальной сети передачи данных Ethernet с виртуальными каналами услуг. Опираясь на рассчитанную величину битовой скорости выбрать модель коммутаторов, привести их технические характеристики. Сеть передачи данных предприятия состоит из трех узлов, соединенных в топологию «кольцо». Исходные данные приведены в
600 руб.