Исследование магнитного поля рассеяния при вихретоковом контроле
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Аннотация
В работе производится моделирование вихретокового контроля с помощью системы двух первичных (намагничивающих) и одной вторичной (измерительной) катушек. Исследуется зависимость информативного сигнала при разных частотах для различных форм дефектов, а так же их размеров (глубины, раскрытие дефекта). Далее рассчитываются информативные признаки, по которым определяются параметры дефекта. Полученные признаки используются при выполнении корреляционного анализа, по результатам которого делается вывод о наиболее полезных признаках. После проведения корреляционного анализа строится интеллектуальная нейронная сеть, обучается и тестируется. Цель работы выбрать наиболее подходящую структуру нейронной сети для дальнейшего использования ее на практике.
Работа содержит: 35 страниц, 20 иллюстраций, 4 таблицы, 2 приложения.
Введение
В электромагнитном методе неразрушающего контроля обычно используют два основных подхода к решению задачи обнаружения дефекта.
Основой первого подхода [1] к обнаружению поверхностных трещин с помощью вихревых токов является тот факт, что трещины препятствуют протеканию тока, при этом учитывается влияние скин-эффекта. В этом случае можно обнаружить те трещины, которые ориентированы вдоль линий магнитного поля. Однородные условия в контролируемом образце можно создать путем его намагничивания с помощью бесконечно длинного соленоида. Но, так как на практике любая намагничивающая катушка имеет конечную длину, следует учитывать магнитные поля рассеяния. Помимо этого стоит учитывать и размагничивающий эффект вихревых токов.
Второй подход [2] заключается в непосредственном использовании магнитного поля рассеяния, которое позволяет выявить приповерхностное изменение магнитного поля путем, например, нанесения на поверхность образца флуоресцентного (светящегося в темноте) ферромагнитного порошка. В этом случае можно обнаружить трещины, перпендикулярные линиям магнитного поля.
В работе производится моделирование вихретокового контроля с помощью системы двух первичных (намагничивающих) и одной вторичной (измерительной) катушек. Исследуется зависимость информативного сигнала при разных частотах для различных форм дефектов, а так же их размеров (глубины, раскрытие дефекта). Далее рассчитываются информативные признаки, по которым определяются параметры дефекта. Полученные признаки используются при выполнении корреляционного анализа, по результатам которого делается вывод о наиболее полезных признаках. После проведения корреляционного анализа строится интеллектуальная нейронная сеть, обучается и тестируется. Цель работы выбрать наиболее подходящую структуру нейронной сети для дальнейшего использования ее на практике.
Работа содержит: 35 страниц, 20 иллюстраций, 4 таблицы, 2 приложения.
Введение
В электромагнитном методе неразрушающего контроля обычно используют два основных подхода к решению задачи обнаружения дефекта.
Основой первого подхода [1] к обнаружению поверхностных трещин с помощью вихревых токов является тот факт, что трещины препятствуют протеканию тока, при этом учитывается влияние скин-эффекта. В этом случае можно обнаружить те трещины, которые ориентированы вдоль линий магнитного поля. Однородные условия в контролируемом образце можно создать путем его намагничивания с помощью бесконечно длинного соленоида. Но, так как на практике любая намагничивающая катушка имеет конечную длину, следует учитывать магнитные поля рассеяния. Помимо этого стоит учитывать и размагничивающий эффект вихревых токов.
Второй подход [2] заключается в непосредственном использовании магнитного поля рассеяния, которое позволяет выявить приповерхностное изменение магнитного поля путем, например, нанесения на поверхность образца флуоресцентного (светящегося в темноте) ферромагнитного порошка. В этом случае можно обнаружить трещины, перпендикулярные линиям магнитного поля.
Другие работы
Расчет, моделирование на ПЭВМ и испытание цифровых фильтров нижних частот
Майк
: 23 марта 2017
Вариант 3
Граничная частота полосы пропускания = 1,2 кГц
Граничная частота полосы задерживания = 3 кГц
Отклонение АЧХ от единицы в полосе пропускания = 0,04
Отклонение АЧХ от нуля в полосе задерживания = 0,017
Частота дискретизации = 48 кГц
Тип окна для нерекурсивного ЦФ 1 и 4
Входной четырехточечный сигнал (-2,-1,1,2)
300 руб.
Компьютерная модель СГ в координатах d, q, 0 в режиме ХХ
Slolka
: 7 октября 2013
СОДЕРЖАНИЕ
Задание
1. Простейшая компьютерная модель турбоагрегата. Исследование динамической устойчивости
1.1 Исследование динамической устойчивости при отключении ЛЭП
а) При отклонении угла меньше
б) При отклонении угла больше
в) При выпадении из синхронизма
2.2 Исследование динамической устойчивости при КЗ
1.3. Исследование динамической устойчивости при КЗ с учетом АПВ
2. Компьютерная модель СГ в координатах d, q, 0 в режиме ХХ
ЗАДАНИЕ
1.Создать простейшую компьютерную модел
10 руб.
Термодинамика и теплопередача СамГУПС 2012 Задача 10 Вариант 5
Z24
: 7 ноября 2025
Воздух, имея начальную температуру t1=27 ºC и абсолютное давление p1, изотермически расширяется до давления р2=0,1 МПа, а затем нагревается в изохорном процессе до тех пор, пока давление вновь не станет равным р1. Требуется определить удельный объем воздуха в конце изотермического расширения и температуру в конце изохорного подвода теплоты, а также изменения удельных значений внутренней энергии, энтальпии и энтропии в изохорном процессе. Теплоемкость воздуха считать не зависящей от температуры.
180 руб.
Низкоуровневое системное программирование
evelin
: 22 июля 2015
Создать программу, которая выделяет цифры в текстовом режиме цветным полем; формат программы: com-программа; ввод с клавиатуры: средствами DOS; вывод на экран: в текстовом режиме; динамическое распределение памяти: определение размера программы.
75 руб.