История доказательства Великой теоремы Ферма
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Проблема,о которой пойдет речь в этом реферате выглядит довольно простой потому, что в основе ее лежит математическое утверждение, которое всем известно, — теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.
Благодаря этому пифагорову заклинанию, теорема запечатлелась в мозгу миллионов, если не миллиардов, людей. Это — фундаментальная теорема, заучивать которую заставляют каждого школьника. Но несмотря на то, что теорема Пифагора доступна пониманию десятилетних, она является вдохновляющим началом проблемы, при решении которой потерпели фиаско величайшие умы в истории математики.
Теорема Пифагора дает нам соотношение, которое выполняется для всех прямоугольных треугольников и, следовательно, определяет прямой угол. В свою очередь, прямой угол определяет перпендикуляр, т.е. отношение вертикали к горизонтали, а в конечном счете — отношение между тремя измерениями нашего мира. Математика — через прямой угол — определяет самую структуру пространства, в котором мы живем. Это очень глубокая мысль.
В символьной записи теорема Пифагора утверждает, что для катетов x y и гипотенузы z прямоугольного треугольника:
x2 + y2 = z2.
Пифагоровы тройки представляют собой комбинации из трех целых чисел, удовлетворяющих соотношению Пифагора x2 + y2 = z2. Например, соотношение Пифагора выполняется при x=3, y=4 и z=5:
З2 + 42 = 52, 9 + 16 = 25.
Пифагорейцы мечтали найти и другие пифагорейские тройки, другие квадраты, из которых можно было бы сложить третий квадрат больших размеров. Еще одна пифагорова тройка: x=5, y=12 и z=13:
52 + 122 = 132, 15 + 144 = 169.
Приведем пифагорову тройку из больших чисел: x=99, y=4900 и z=4901. По мере того, как числа возрастают, пифагоровы тройки встречаются все реже и находить их становится все труднее и труднее. Пифагорейцы изобрели метод отыскания таких троек и, пользуясь им, доказали, что пифагоровых троек существует бесконечно много. Рассмотрим уравнение, очень похожее на уравнение Пифагора, но отличающееся от него тем, что все числа входят в кубе:
Благодаря этому пифагорову заклинанию, теорема запечатлелась в мозгу миллионов, если не миллиардов, людей. Это — фундаментальная теорема, заучивать которую заставляют каждого школьника. Но несмотря на то, что теорема Пифагора доступна пониманию десятилетних, она является вдохновляющим началом проблемы, при решении которой потерпели фиаско величайшие умы в истории математики.
Теорема Пифагора дает нам соотношение, которое выполняется для всех прямоугольных треугольников и, следовательно, определяет прямой угол. В свою очередь, прямой угол определяет перпендикуляр, т.е. отношение вертикали к горизонтали, а в конечном счете — отношение между тремя измерениями нашего мира. Математика — через прямой угол — определяет самую структуру пространства, в котором мы живем. Это очень глубокая мысль.
В символьной записи теорема Пифагора утверждает, что для катетов x y и гипотенузы z прямоугольного треугольника:
x2 + y2 = z2.
Пифагоровы тройки представляют собой комбинации из трех целых чисел, удовлетворяющих соотношению Пифагора x2 + y2 = z2. Например, соотношение Пифагора выполняется при x=3, y=4 и z=5:
З2 + 42 = 52, 9 + 16 = 25.
Пифагорейцы мечтали найти и другие пифагорейские тройки, другие квадраты, из которых можно было бы сложить третий квадрат больших размеров. Еще одна пифагорова тройка: x=5, y=12 и z=13:
52 + 122 = 132, 15 + 144 = 169.
Приведем пифагорову тройку из больших чисел: x=99, y=4900 и z=4901. По мере того, как числа возрастают, пифагоровы тройки встречаются все реже и находить их становится все труднее и труднее. Пифагорейцы изобрели метод отыскания таких троек и, пользуясь им, доказали, что пифагоровых троек существует бесконечно много. Рассмотрим уравнение, очень похожее на уравнение Пифагора, но отличающееся от него тем, что все числа входят в кубе:
Другие работы
Кондуктор для сверления - Вариант 9 Деталирование
HelpStud
: 16 октября 2025
Корпус 1 изготовлен из стали, имеет три фрезерованный паза для вывода сверла при сверлении отверстий. Верхний цилиндрический поясок служит для установки детали на корпус 1. Контур детали показан тонкой штрихпунктирной линией. Плита кондукторная 2 изготовлена из стали, служит для установки кондукторных втулок и прижима детали. Втулки кондукторные 3 (3 шт.) изготовлены из стали и закалены, служат для направления сверла при сверлении. Палец 4 изготовлен из стали, служит для точной установки и зажил
250 руб.
Совершенствование охраны труда в КСУП «Совхоз «Коммунист» с разработкой инженерно-технических решений по улучшению условий труда и повышению производственной безопасности при обслуживании аккумуляторных батарей
Samonev
: 15 марта 2024
Дипломный проект: 86 с., 18 таблиц, 9 рисунков, использованных
источников – 23. Графическая часть – 9 листов формата А1.
Ключевые слова: охрана труда, производственная безопасность, условия труда, техническое оснащение, производственные показатели, экологическая безопасность, пожарная безопасность, опасные и вредные производственные факторы, тележка с колесными опорами, заправочный пистолет, установка для приготовления и дозирования электролита.
Объектом исследования является тележка с колесными
3000 руб.
Плоский контур. вариант 2 ЧЕРТЕЖ
coolns
: 29 октября 2025
Плоский контур. вариант 2 ЧЕРТЕЖ
Плоский контур КГ01.002.000.000 ЧЕРТЕЖ
На формате А2 выполнить чертеж согласно заданию. Проставить размеры.
Чертеж выполнен на формате А2 + 3d модель (все на скриншотах показано и присутствует в архиве) выполнены в КОМПАС 3D.
Также открывать и просматривать, печатать чертежи и 3D-модели, выполненные в КОМПАСЕ можно просмоторщиком КОМПАС-3D Viewer.
По другим вариантам и всем вопросам пишите в Л/С.
150 руб.
Лабораторная работа № 2 по дисциплине: Направляющие системы электросвязи. Вариант № 20
bioclown
: 12 ноября 2012
“ИССЛЕДОВАНИЕ ДИСПЕРСИОННЫХ ИСКАЖЕНИЙ ИМПУЛЬСОВ В ОПТИЧЕСКОМ ВОЛОКНЕ”
1. ЦЕЛЬ РАБОТЫ
Целью работы является проведение компьютерного эксперимента по исследованию влияния составляющих дисперсии на временные параметры передаваемых оптических импульсов:
- модовой дисперсии ступенчатых оптических волокон;
- модовой дисперсии градиентных оптических волокон;
- материальной составляющей хроматической дисперсии;
- волноводной составляющей хроматической дисперсии;
- профильной составляющей хроматической д
89 руб.