Контрольная работа. Математический анализ. Семестр № 2. Вариант № 9
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
Решение.
Градиент равен:
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
Решение.
Перейдём в полярные координаты.
В полярной системе координат x = r cosA, y = r sinA, x2+y2 = r2, поэтому уравнение кривой можно записать:
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Решение.
Градиент равен:
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
Решение.
Перейдём в полярные координаты.
В полярной системе координат x = r cosA, y = r sinA, x2+y2 = r2, поэтому уравнение кривой можно записать:
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Дополнительная информация
Коментарии: Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Математический анализ (2 сем.)
Вид работы: Контрольная работа 2
Оценка:Зачет
Дата оценки:13.03.2013
Рецензия: существенных замечаний нет. Ваша работа зачтена.
Агульник Ольга Николаевна
Оценена Ваша работа по предмету: Математический анализ (2 сем.)
Вид работы: Контрольная работа 2
Оценка:Зачет
Дата оценки:13.03.2013
Рецензия: существенных замечаний нет. Ваша работа зачтена.
Агульник Ольга Николаевна
Похожие материалы
Математический анализ. Контрольная работа. Курс 1-й, семестр 2-й. Вариант №9
growlist
: 9 марта 2017
Дисциплина «Математический анализ». Часть 2.
Вариант № 9
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
3. Вычислить криволинейный интеграл по координатам
где L - часть дуги окружности x = R cos t, y = R sin t лежащая в первом квадранте и «пробегаемая» против хода часовой стрелки.
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
70 руб.
Математический анализ. Контрольная работа. вариант № 9
inwork2
: 18 ноября 2017
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
;
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3 .Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
100 руб.
Математический анализ. Контрольная работа. 2 семестр. 9 вариант.
Taburet
: 5 октября 2011
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда
5. Найти интервал сходимости степенного ряда
6. Вычислить определенный
150 руб.
Математический анализ. Математический анализ. Вариант №9
inwork2
: 25 июня 2017
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
100 руб.
Математический анализ. Контрольная работа. Вариант №5.Семестр 2.
ANNA
: 5 ноября 2017
Дистанционное обучение
Дисциплина «Математический анализ». Часть 2.
Вариант No 5
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ; .
3. Вычислить криволинейный интеграл по координатам
,
где - дуга параболы от точки до точки .
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
Подробнее в скриншоте.
100 руб.
Контрольная работа по дисциплине: Математический Анализ. Вариант №9.
ДО Сибгути
: 27 декабря 2017
Вариант № 9
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ; ;
3. Вычислить криволинейный интеграл по координатам
,
где - часть дуги окружности , , лежащая в первом квадранте и «пробегаемая» против хода часовой стрелки.
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
50 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №9
tanvi
: 23 февраля 2014
Задача 1.
Провести исследование функций с указанием
а) области определения и точек разрыва
б) экстремумов
в) асимптот
По полученным данным построить графики функций.
Задача 2.
Найти неопределенные интегралы.
Задача 3.
Вычислить площади областей, заключенных между линиями:
Контрольная работа по дисциплине: Математический анализ. Вариант №9
mik8184
: 7 июня 2012
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
120 руб.
Другие работы
Втулка скольжения ГУК-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
lelya.nakonechnyy.92@mail.ru
: 26 июля 2016
Втулка скольжения ГУК-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
91 руб.
Теплотехника Задача 26.12 Вариант 99
Z24
: 20 октября 2025
Плоская стальная стенка толщиной δс омывается с одной стороны горячими газами с температурой t1, а с другой стороны – водой с температурой t2. Определите коэффициент теплопередачи от газов к воде k, удельный тепловой поток q и температуры обеих поверхностей стенки, если известны коэффициенты теплоотдачи от газов к стенке α1 и от стенки к воде α2; коэффициент теплопроводности стали λc=50 Вт/(м·ºС). Определите так же все указанные величины, если стенка со стороны воды покроется слоем накипи толщин
180 руб.
Физика (часть 1). Лабораторная работа №2. Измерение удельного заряда электрона методом магнетрона. Вариант 1
rmn77
: 18 марта 2018
Лабораторная работа №2
«Измерение удельного заряда электрона методом магнетрона»
Цель работы:
1. Ознакомиться с законами движения заряженных частиц в электрическом и магнитном полях.
2. Измерить удельный заряд электрона с помощью цилиндрического магнетрона.
Исходные данные:
Вариант 1
Анодное напряжение, Uа=19В
Контрольные вопросы
1. Магнитное поле, его основные физические свойства.
2. Основные параметры электрического поля: напряжённость и индукция, связь между ними.
3. Закон Био – Савара - Ла
220 руб.
Устройство натяжное МЧ00.42.00.00
vermux1
: 28 июня 2017
Устройство натяжное МЧ00.42.00.00
Натяжное устройство предупреждает провисание под нагрузкой ленты или цепи конвейера. Натяжение ленты осуществляется горизонтальным перемещением ползуна поз. 4 по направляющим корпуса поз. 7. Крышка поз. 2 крепится к корпусу четырьмя шпильками поз. 10. Корпус закрепляется на раме конвейера четырьмя болтами. Через резьбовое отверстие ползуна подается смазка, которая по канавкам распределяется по всей трущейся поверхности вкладыша поз. 3. Винты поз. 9 предохраняют
170 руб.