Курсовая работа по предмету: "Теория вероятностей и математическая статистика".Вариант № 6
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Часть I: Теория вероятностей и математическая статистика
Задача 1.
В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
г) какова вероятность того, что из K2 случайно выбранных из партии деталей не более L2 окажется бракованными?
д) какова вероятность того, что из K3 случайно выбранных из партии деталей не менее L3 окажется НЕ бракованными?
е) из партии выбрано случайно K4 деталей, из них L4 оказалось бракованными; какова вероятность, что больше в выборке нет бракованных деталей?
ж) из партии выбрано K5 деталей, и которых не менее L5 оказалось бракованными; какова вероятность того, что в последующей выборке из K6 деталей бракованных окажется не более L6 (предыдущая выборка в партию не возвращается)?
Числовые данные
N=140000, M=10920, K1=1097, L1=39, K2=1000, L2=10, K3=1107, L3=5, K4=517, L4=67, K5=917, L5=13, K6=423, L6=11
Задача 2.
«Неправильную» монетку (вероятность выпадения «орла» составляет A) подбрасывают N раз. Рассматриваются следующие величины: x — количество выпавших «орлов», y — количество выпавших «решек», , , . Ответьте на следующие вопросы об этих случайных величинах:
а) опишите распределения с.в. x, y, z1, z2, z3; найдите математические ожидания, вторые моменты, дисперсии;
б) опишите условное распределение с.в. x|y;
в) в процессе подбрасывания на M-том броске оказалось, что уже выпало ровно L «орлов», какова вероятность того, что всего выпадет не более K решек?
г) найдите ковариацию и коэффициент корреляции величин x и y;
д) найдите ковариацию и коэффициент корреляции величин x2 и y;
Числовые данные
A=0,69; N=252; M=142; L=80; K=55
Задача 3.
Срок службы электрической лампы имеет показательное распределение с математическим ожиданием L часов. Ответьте на следующие вопросы:
а) какова вероятность того, что лампа прослужит от m1 до M1 часов?
б) какова вероятность того, что прослужившая уже m2 часов лампа прослужит еще не менее M2 часов?
в) какова вероятность того, что средний срок службы для N3 ламп составит не менее M3 часов?
г) какова вероятность того, что для N4 ламп срок службы составит от m4 до M4 часов?
Числовые данные
L=76; m1=75; M1=109; m2=77; M2=99; N3=820; M3=81; N4=890; m4=93; M4=139.
Задача 4.
Рассмотрите случайную выборку Xi из некоторого известного распределения и ответьте на следующие вопросы:
а) найдите оценку параметра A методом моментов, если известно, что выборка сделана из равномерного распределения U(–1;A)
б) найдите оценку методом моментов параметра B, если известно, что выборка сделана из равномерного распределения U(-B;B)
в) найдите оценки методом максимального правдоподобия параметров c и C, если известно, что выборка сделана из равномерного распределения U(c; C);
г) найдите (и сравните) оценки параметра L методом моментов и методом максимального правдоподобия, если известно, что выборка сделана из экспоненциального EL распределения;
д) найдите оценку параметра m методом моментов, если известно, что выборка сделана из нормального распределения N(m, 1)
е) найдите оценки параметров M и S любым известным методом, если известно, что выборка сделана из нормального распределения N(M, S);
ж) постройте гистограмму и полигон по выборке, количество интервалов — K;
з) в каждом из пунктов (а) — (е) оцените близость данного теоретического распределения к эмпирическому на основе критерия Пирсона; какое из распределений (а) — (е) лучше описывает выборку?
Числовые данные
i1=-0,036; i2=-0,809; i3=0,315; i4=-0,265; i5=0,471; i6=-0,386; i7=0,576; i8=-0,556; i9=0,508; i10=0,477; K=3
Часть II: Математическая статистика (практикум)
Задание 1.
По данной выборке Xi выполните следующие вычисления:
а) постройте гистограмму, полигон, выборочную функцию распределения;
б) вычислите выборочные моменты и связанные величины (первый, второй, третий, дисперсию, СКО, эксцесс и коэффициент асимметрии);
в) оцените методом моментов или/и методом максимального правдоподобия по выборке параметры основных непрерывных распределений (равномерное, экспоненциальное, нормальное и пр.), оцените близость оценок теоретических распределений к выборочному; подберите качественное описание выборочного распределения теоретическим;
г) предположив, что выборка получена из нормального распределения, протестируйте гипотезы равенства среднего нулю при неизвестной дисперсии; равенства среднего нулю при дисперсии, равной выборочной;
Числовые данные:
вариант: 6
i Xi
1 0,15
2 -3,28
3 5,13
4 0,19
5 -40,44
6 11,06
7 -2,17
8 0
9 0,26
10 -7,68
11 0,33
12 -8,03
13 0,37
14 23,67
15 44,56
16 -1,62
17 42,31
18 2,62
19 21,84
20 -1,7
21 -0,49
22 -0,2
23 0,35
24 -32,11
25 13,72
26 -0,02
27 -1,95
28 -12,02
29 -7,96
30 -2,97
Задание 2.
По выборкам Xi, Yi выполните следующие вычисления:
а) найдите выборочную ковариацию и выборочный коэффициент корреляции;
б) методом наименьших квадратов оцените параметры модели X=aY+b, протестируйте гипотезу {a=0};
в) методом наименьших квадратов оцените параметры модели Y=kX+d, протестируйте гипотезу {k=0};
г) в пунктах (б), (в) найдите и сравните коэффициенты R2;
д) в пунктах (б), (в) протестируйте близость эмпирического распределения остатков моделей к нормальному;
е) каково ожидаемое значение с.в. Y, если известно значение с.в. X? Каков доверительный интервал для Y в этом случае? Постройте график этих зависимостей для выборочных значений Xi и сравните с выборочными значениями Yi.
Числовые данные:
вариант: 6
i Уi
1 0,77
2 -16,69
3 26,11
4 0,96
5 -205,9
6 56,3
7 -11,05
8 0
9 1,33
10 -39,1
11 1,68
12 -40,88
13 1,88
14 120,5
15 226,85
16 -8,25
17 215,39
18 13,34
19 111,18
20 -8,65
21 -2,49
22 -1,02
23 1,78
24 -163,5
25 69,84
26 -0,1
27 -9,93
28 -61,19
29 -40,52
30 -15,12
Задача 1.
В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
г) какова вероятность того, что из K2 случайно выбранных из партии деталей не более L2 окажется бракованными?
д) какова вероятность того, что из K3 случайно выбранных из партии деталей не менее L3 окажется НЕ бракованными?
е) из партии выбрано случайно K4 деталей, из них L4 оказалось бракованными; какова вероятность, что больше в выборке нет бракованных деталей?
ж) из партии выбрано K5 деталей, и которых не менее L5 оказалось бракованными; какова вероятность того, что в последующей выборке из K6 деталей бракованных окажется не более L6 (предыдущая выборка в партию не возвращается)?
Числовые данные
N=140000, M=10920, K1=1097, L1=39, K2=1000, L2=10, K3=1107, L3=5, K4=517, L4=67, K5=917, L5=13, K6=423, L6=11
Задача 2.
«Неправильную» монетку (вероятность выпадения «орла» составляет A) подбрасывают N раз. Рассматриваются следующие величины: x — количество выпавших «орлов», y — количество выпавших «решек», , , . Ответьте на следующие вопросы об этих случайных величинах:
а) опишите распределения с.в. x, y, z1, z2, z3; найдите математические ожидания, вторые моменты, дисперсии;
б) опишите условное распределение с.в. x|y;
в) в процессе подбрасывания на M-том броске оказалось, что уже выпало ровно L «орлов», какова вероятность того, что всего выпадет не более K решек?
г) найдите ковариацию и коэффициент корреляции величин x и y;
д) найдите ковариацию и коэффициент корреляции величин x2 и y;
Числовые данные
A=0,69; N=252; M=142; L=80; K=55
Задача 3.
Срок службы электрической лампы имеет показательное распределение с математическим ожиданием L часов. Ответьте на следующие вопросы:
а) какова вероятность того, что лампа прослужит от m1 до M1 часов?
б) какова вероятность того, что прослужившая уже m2 часов лампа прослужит еще не менее M2 часов?
в) какова вероятность того, что средний срок службы для N3 ламп составит не менее M3 часов?
г) какова вероятность того, что для N4 ламп срок службы составит от m4 до M4 часов?
Числовые данные
L=76; m1=75; M1=109; m2=77; M2=99; N3=820; M3=81; N4=890; m4=93; M4=139.
Задача 4.
Рассмотрите случайную выборку Xi из некоторого известного распределения и ответьте на следующие вопросы:
а) найдите оценку параметра A методом моментов, если известно, что выборка сделана из равномерного распределения U(–1;A)
б) найдите оценку методом моментов параметра B, если известно, что выборка сделана из равномерного распределения U(-B;B)
в) найдите оценки методом максимального правдоподобия параметров c и C, если известно, что выборка сделана из равномерного распределения U(c; C);
г) найдите (и сравните) оценки параметра L методом моментов и методом максимального правдоподобия, если известно, что выборка сделана из экспоненциального EL распределения;
д) найдите оценку параметра m методом моментов, если известно, что выборка сделана из нормального распределения N(m, 1)
е) найдите оценки параметров M и S любым известным методом, если известно, что выборка сделана из нормального распределения N(M, S);
ж) постройте гистограмму и полигон по выборке, количество интервалов — K;
з) в каждом из пунктов (а) — (е) оцените близость данного теоретического распределения к эмпирическому на основе критерия Пирсона; какое из распределений (а) — (е) лучше описывает выборку?
Числовые данные
i1=-0,036; i2=-0,809; i3=0,315; i4=-0,265; i5=0,471; i6=-0,386; i7=0,576; i8=-0,556; i9=0,508; i10=0,477; K=3
Часть II: Математическая статистика (практикум)
Задание 1.
По данной выборке Xi выполните следующие вычисления:
а) постройте гистограмму, полигон, выборочную функцию распределения;
б) вычислите выборочные моменты и связанные величины (первый, второй, третий, дисперсию, СКО, эксцесс и коэффициент асимметрии);
в) оцените методом моментов или/и методом максимального правдоподобия по выборке параметры основных непрерывных распределений (равномерное, экспоненциальное, нормальное и пр.), оцените близость оценок теоретических распределений к выборочному; подберите качественное описание выборочного распределения теоретическим;
г) предположив, что выборка получена из нормального распределения, протестируйте гипотезы равенства среднего нулю при неизвестной дисперсии; равенства среднего нулю при дисперсии, равной выборочной;
Числовые данные:
вариант: 6
i Xi
1 0,15
2 -3,28
3 5,13
4 0,19
5 -40,44
6 11,06
7 -2,17
8 0
9 0,26
10 -7,68
11 0,33
12 -8,03
13 0,37
14 23,67
15 44,56
16 -1,62
17 42,31
18 2,62
19 21,84
20 -1,7
21 -0,49
22 -0,2
23 0,35
24 -32,11
25 13,72
26 -0,02
27 -1,95
28 -12,02
29 -7,96
30 -2,97
Задание 2.
По выборкам Xi, Yi выполните следующие вычисления:
а) найдите выборочную ковариацию и выборочный коэффициент корреляции;
б) методом наименьших квадратов оцените параметры модели X=aY+b, протестируйте гипотезу {a=0};
в) методом наименьших квадратов оцените параметры модели Y=kX+d, протестируйте гипотезу {k=0};
г) в пунктах (б), (в) найдите и сравните коэффициенты R2;
д) в пунктах (б), (в) протестируйте близость эмпирического распределения остатков моделей к нормальному;
е) каково ожидаемое значение с.в. Y, если известно значение с.в. X? Каков доверительный интервал для Y в этом случае? Постройте график этих зависимостей для выборочных значений Xi и сравните с выборочными значениями Yi.
Числовые данные:
вариант: 6
i Уi
1 0,77
2 -16,69
3 26,11
4 0,96
5 -205,9
6 56,3
7 -11,05
8 0
9 1,33
10 -39,1
11 1,68
12 -40,88
13 1,88
14 120,5
15 226,85
16 -8,25
17 215,39
18 13,34
19 111,18
20 -8,65
21 -2,49
22 -1,02
23 1,78
24 -163,5
25 69,84
26 -0,1
27 -9,93
28 -61,19
29 -40,52
30 -15,12
Дополнительная информация
Сдал на отлично!
Работу делали на заказ.
Работу делали на заказ.
Похожие материалы
Курсовая работа по предмету: Теория вероятностей и математическая статистика Вариант № 6
cOC41NE
: 6 ноября 2022
Часть I: Теория вероятностей и математическая статистика
Задача 1.
В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
150 руб.
Курсовая работа по предмету: «Теория вероятностей и математическая статистика» Вариант № 6
xtrail
: 10 апреля 2013
Часть I: Теория вероятностей и математическая статистика
Задача 1.
В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
450 руб.
Теория вероятностей и математическая статистика. Вариант №6
najdac
: 17 ноября 2021
Контрольная работа по курсу Теория вероятностей
Контрольная работа состоит из пяти задач, текст задачи и её параметры определяются по последней цифре пароля как указано в таблице. Для проверки преподавателю высылаются сразу все задачи, выполненные в редакторе Word.
Контрольная работа состоит из пяти задач, текст задачи и её параметры определяются по последней цифре пароля(6) как указано в таблице 1
Задача 1
Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединени
75 руб.
Теория вероятности и математическая статистика. Вариант №6
Vladimir54
: 22 января 2020
Задание 1. Комбинаторика
Сколько 7-ми буквенных слов можно составить из букв слова ШЕРШЕНЬ?
Для передачи сообщения используются сигналы типов 0 и 1. Сигналы 0 составляют 60%, а сигналы 1 остальные 40%. Вероятность искажения сигнала 0 равна 0.0001, а вероятность искажения сигнала 1 равна 0.0002. Найти вероятность искажения наугад взятого сигнала.
300 руб.
Теория вероятностей и математическая статистика. Вариант №6
5234
: 7 ноября 2016
Билет № 6
1. Непрерывная случайная величина и её характеристики. Плотность и функция распределения и их свойства. Равномерное распределение
2. Из урны, где находятся 7 белых и 8 черных шаров, случайно вытащены 10 шаров. Какова вероятность того, что среди них будет 5 черных шаров?
3. Дискретная случайная величина имеет следующий ряд распределения
Х 10 20 30 40 50
р a 2a 0,35 0,21 а
Найти величину a, математическое ожидание и среднее квадратическое отклонение этой случайной величины.
4. Непр
95 руб.
Теория вероятностей и математическая статистика, вариант 6
СибирскийГУТИ
: 1 октября 2013
Часть I: Теория вероятностей и математическая статистика
Задача 1.
В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
200 руб.
Контрольнаяработа. Вариант №6. Теория вероятности и математическая статистика
nerverid
: 6 апреля 2014
Контрольная работа. вариант 6. Теория вероятности и математическая статистикаТри пассажира садятся в поезд, случайно выбирая любой из 6 вагонов. Какова вероятность, что хотя бы один из них сядет в первый вагон, если известно, что они сели в разные вагоны
35 руб.
Теория вероятностей и математическая статистика
Dirol340
: 11 декабря 2022
Задание 1.
Сколько 4-х буквенных слов можно составить из букв слова УКУС?
Решение: Переставить буквы в слове можно 4! Способами. В слове 2 одинаковые буквы: У – две буквы. Если менять местами эти буквы в конкретной расстановке, то слова будут получаться одинаковые. Следовательно, общее число слов, составленных перестановкой букв из слова УКУС будет равно:
Задание 2.
В автопарке имеются автомобили трех марок, всех поровну. Автомобиль первой марки исправен с вероятностью 0,8, второй марки с
250 руб.
Другие работы
Особенности социализации подростков в различных типах семей
ostah
: 18 декабря 2012
ОГЛАВЛЕНИЕ
Введение …………………………………………………………..3
Глава 1. Теоретические аспекты изучения процесса социализации
1.1 Социализация и развитие личности ……………………….…7
1.2 Феномены, механизмы, направления социализации ……….11
1.3 Современные теории социализации:
1.3.1 Западные концепции социализации личности ………..13
1.3.2 Отечественные концепции социализации личности .....25
1.4 Социальная ситуация развития ……………………………….29
Глава 2. Семья как важнейший институт социализации
2.1 Определения, типология, функ
10 руб.
Курсовая работа "экономика предприятия" 3-й вариант
Yulenka29
: 1 апреля 2015
1. Объем услуг
1.1. количество абонентов (сим-карт)
а) среднее количество за 6 мес. тек. год. абонент 24008
б) ожидаемый прирост во 2-ом полугодии тек. года
3-й квартал абонент 352
4-ый квартал абонент 360
в) наличие на 1.7. текущего года абонент 24190
г) план прироста на следующий год
100 руб.
Обучение менеджменту. Программы подготовки и переподготовки менеджеров
jk-81
: 28 февраля 2012
СОДЕРЖАНИЕ
ВВЕДЕНИЕ 3
ГЛАВА 1 ОБУЧЕНИЕ МЕНЕДЖМЕНТУ 5
1.1 Менеджмент 5
1.2 Менеджмент как наука 6
1.3 Подготовка менеджеров в различных странах 7
ГЛАВА 2. ПРОГРАММЫ ПОДГОТОВКИ И ПЕРЕПОДГОТОВКИ МЕНЕДЖЕРОВ В РОССИИ 19
2.1Теоретические и методологические основы процесса подготовки и переподготовки будущих менеджеров 19
2.2 Проблемы подготовки и переподготовки менеджеров в России 23
2.3 Основные сложившиеся направления в подготовке и переподготовке менеджеров в России 34
ЗАКЛЮЧЕНИЕ 39
СПИСОК ИСПОЛЬЗО
300 руб.
Экзаменационная работа по предмету Менеджмент в системах телекоммуникациях.
JuliaRass
: 17 июля 2011
Билет № 10
Факультет МЭС Курс 4 Семестр
Дисциплина Менеджмент в телекоммуникациях
1. Экстраполяционные методы планирования потребностей в услугах связи.
2. Организационно-производственная структура ТУСМ.
3. Задача 4.3
Оптимизировать сетевой график по параметру время-стоимость.
250 руб.