Теория информации .Контрольная работа.Вариант №2.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Определить энтропию и избыточность двоичного источника с независимым выбором элементов, если задана вероятность первого сообщения P(x1). P(x2)=1-P(x1).
2. Определить энтропию и избыточность источника с независимым выбором элементов (букв), вероятности выбора которых приведены в таблице вариантов.
Таблица вариантов к задаче 2.
NoNo вар. P(x1) P(x2) P(x3) P(x4) P(x5) P(x6) P(x7) P(x8)
1-4 0,3 0,2 0,2 0,1 0,05 0,05 0,05 0,05
3. Закодировать сообщение источника предыдущей задачи для передачи информации по каналу связи:
o равномерным двоичным кодом;
o оптимальным неравномерным двоичным кодом.
Сравните среднее число элементов кода, приходящегося на одну букву, для обоих способов кодирования и сделайте обобщающие выводы.
4.В системе связи используется двоичный источник с зависимыми элементами (буквами) x1, x2, для которых заданы вероятности переходов.
Требуется:
1. Изобразить на чертеже диаграмму состояний и переходов источника.
2. Вычислить вероятности P(x1) и P(x2).
3. Определить энтропию и избыточность источника с найденными вероятностями P(x1) и P(x2) в предположении отсутствия корреляционных связей.
4. Определить энтропию и избыточность источника с учётом корреляционных связей.
5. Сравните результаты вычислений по пунктам 3 и 4 сделайте вывод о влиянии корреляции на энтропию и избыточности источника.
Для разных вариантов P(x1|x2)=1/(1+0,1N), P(x2|x1)=(N+4)/40, где N – номер варианта.
5.Закодировать сообщения источника предыдущей задачи сообщений по каналу связи:
o равномерным двоичным кодом;
o оптимальным кодом с учётом корреляционных связей, укрупняя алфавит, путём объединения букв в кодовые слова по две буквы.
Сравнить среднее число элементов кода, приходящееся на одну букву, для этих двух случаев.
6.Решить задачу 5, укрупнив алфавит источника путём объединения букв в кодовые слова по три буквы.
7. Вычислить пропускную способность двоичного канала связи, если информация передаётся со скоростью
V=1200 Бод (для вариантов 1-10);
8. Определить энтропию и производительность источника непрерывных сообщений, если плотность вероятности сигнала описывается равномерным законом распределения, а сигнал ограничен в объёме от -10 до +N милливольт, где N – номер варианта.
9. Определить энтропию источника непрерывных сообщений с гауссовским законом распределения напряжений, если математическое ожидание равно 10N вольт, а дисперсия σ2 = 0.01N Вт, где N – номер варианта.
10. Вычислить пропускную способность непрерывного канала связи, если эффективная полоса пропускания канала
11. Определить, какую мощность должен иметь сигнал с гауссовским законом распределения, если известна полоса пропускная канала связи
Δfэфф=1000+10N Гц
и спектральная плотность шума
N0=10+N мкВт/Гц,
где N – номер варианта задачи.
12. Рассчитать и построить зависимость пропускной способности непрерывного канал связи от эффективной полосы пропускания канала при мощности сигнала
Pc=10+N мВт,
где N – номер варианта задачи.
2. Определить энтропию и избыточность источника с независимым выбором элементов (букв), вероятности выбора которых приведены в таблице вариантов.
Таблица вариантов к задаче 2.
NoNo вар. P(x1) P(x2) P(x3) P(x4) P(x5) P(x6) P(x7) P(x8)
1-4 0,3 0,2 0,2 0,1 0,05 0,05 0,05 0,05
3. Закодировать сообщение источника предыдущей задачи для передачи информации по каналу связи:
o равномерным двоичным кодом;
o оптимальным неравномерным двоичным кодом.
Сравните среднее число элементов кода, приходящегося на одну букву, для обоих способов кодирования и сделайте обобщающие выводы.
4.В системе связи используется двоичный источник с зависимыми элементами (буквами) x1, x2, для которых заданы вероятности переходов.
Требуется:
1. Изобразить на чертеже диаграмму состояний и переходов источника.
2. Вычислить вероятности P(x1) и P(x2).
3. Определить энтропию и избыточность источника с найденными вероятностями P(x1) и P(x2) в предположении отсутствия корреляционных связей.
4. Определить энтропию и избыточность источника с учётом корреляционных связей.
5. Сравните результаты вычислений по пунктам 3 и 4 сделайте вывод о влиянии корреляции на энтропию и избыточности источника.
Для разных вариантов P(x1|x2)=1/(1+0,1N), P(x2|x1)=(N+4)/40, где N – номер варианта.
5.Закодировать сообщения источника предыдущей задачи сообщений по каналу связи:
o равномерным двоичным кодом;
o оптимальным кодом с учётом корреляционных связей, укрупняя алфавит, путём объединения букв в кодовые слова по две буквы.
Сравнить среднее число элементов кода, приходящееся на одну букву, для этих двух случаев.
6.Решить задачу 5, укрупнив алфавит источника путём объединения букв в кодовые слова по три буквы.
7. Вычислить пропускную способность двоичного канала связи, если информация передаётся со скоростью
V=1200 Бод (для вариантов 1-10);
8. Определить энтропию и производительность источника непрерывных сообщений, если плотность вероятности сигнала описывается равномерным законом распределения, а сигнал ограничен в объёме от -10 до +N милливольт, где N – номер варианта.
9. Определить энтропию источника непрерывных сообщений с гауссовским законом распределения напряжений, если математическое ожидание равно 10N вольт, а дисперсия σ2 = 0.01N Вт, где N – номер варианта.
10. Вычислить пропускную способность непрерывного канала связи, если эффективная полоса пропускания канала
11. Определить, какую мощность должен иметь сигнал с гауссовским законом распределения, если известна полоса пропускная канала связи
Δfэфф=1000+10N Гц
и спектральная плотность шума
N0=10+N мкВт/Гц,
где N – номер варианта задачи.
12. Рассчитать и построить зависимость пропускной способности непрерывного канал связи от эффективной полосы пропускания канала при мощности сигнала
Pc=10+N мВт,
где N – номер варианта задачи.
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория информации
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 21.12.2012
Рецензия:Уважаемый ******,
Сидельников Геннадий Михайлович
Оценена Ваша работа по предмету: Теория информации
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 21.12.2012
Рецензия:Уважаемый ******,
Сидельников Геннадий Михайлович
Похожие материалы
Теория информации. Контрольная работа. Вариант №2
1ked
: 13 декабря 2015
1. Определить энтропию и избыточность двоичного источника с независимым выбором элементов, если задана вероятность первого сообщения P(x1). P(x2)=1-P(x1).
Для разных вариантов P(x1)=1/(1+N), где N –номер варианта.
2. Определить энтропию и избыточность источника с независимым выбором элементов (букв), вероятности выбора которых приведены в таблице вариантов.
. Закодировать сообщение источника предыдущей задачи для передачи информации по каналу связи:
o равномерным двоичным кодом;
o оптимальным
250 руб.
Контрольная работа по дисциплине: Теория информации. Вариант №2.
freelancer
: 8 августа 2016
Задание:
Для всех заданий контрольной работы используется набор символов, входящих в ФИО студента. Все задания необходимо выполнить вручную. Все примеры построения кодов и оформления решения задач можно найти в конспекте.
o Построить код Хаффмана для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода.
o Построить код Фано для набора букв ФИО. Для оценки вероятностей символов использовать частот
50 руб.
Теория информации: контрольная работа
Леший
: 8 октября 2022
Контрольная работа по теории информации
1. Вычислить энтропию Шеннона для символов ФИО.
2. Построить код Хаффмана для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода.
3. Построить код Фано для набора букв ФИО. Подсчитать среднюю длину кодового слова построенного кода.
4. Построить код Шеннона для набора букв ФИО. Подсчитать среднюю длину кодового слова построенного кода.
5. Построить код Г
500 руб.
Контрольная работа по Теории информации
nik200511
: 8 апреля 2015
1. Построить код Хаффмана для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода.
2. Построить код Фано для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода.
3. Построить код Шеннона для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать средню
62 руб.
Контрольная работа. Теория информации
nik200511
: 30 июня 2014
1. Построить код Хаффмана для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода.
2. Построить код Фано для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода.
3. Построить код Шеннона для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю
52 руб.
Теория информации. Контрольная работа
Efimenko250793
: 4 февраля 2014
Построить код Хаффмана для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода.
Построить код Фано для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода.
Построить код Шеннона для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину ко
100 руб.
Теория информации. Контрольная работа
Efimenko250793
: 4 февраля 2014
Построить код Хаффмана для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода.
Построить код Фано для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода.
Построить код Шеннона для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину ко
100 руб.
Теория информации. Контрольная работа.
nik200511
: 7 сентября 2013
1. Построить код Хаффмана для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода.
2. Построить код Фано для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать среднюю длину кодового слова построенного кода.
3. Построить код Шеннона для набора букв ФИО. Для оценки вероятностей символов использовать частоты вхождения букв в ФИО. Подсчитать средню
51 руб.
Другие работы
Значення психологічної уваги. Методи взаємодії психолога та клієнта в рамках психоконсультативної допомоги
Elfa254
: 15 октября 2013
План
Загальне поняття про увагу.
1.1 Основні функції уваги
1.2 Види уваги
2. Психоконсультативна допомога, методи взаємодії психолога з клієнтом.
2.1 Принципи та методи консультування
2.2 Етапи і побудова консультації
2.3 Технологічні правила консультування
2.4 Особистість консультанта
2.5 Психологічні особливості клієнтів
Список використаної літератури.
1. Загальне поняття про увагу
Увага - це особлива властивість людської психіки. Вона не існує самостійно - поза мисленням, сприй
Гидравлика ИжГТУ 2007 Задача 1.1 Вариант 15
Z24
: 20 октября 2025
Найти абсолютное давление воздуха в сосуде B, если избыточное давление на поверхности воды в сосуде А равно p, а уровни жидкостей в трубках равны h, h1 и h2.
Плотности жидкостей:
вода — 1000 кг/м³;
спирт — 800 кг/м³;
ртуть — 13600 кг/м³.
Результат выразить в Па и в кгс/см².
150 руб.
Понятие о рациональном экономическом поведении, ограниченная рациональность
evelin
: 2 марта 2014
Человеческие существа - несчастные создания - обремененные потребностями. В числе прочего нам нужны любовь, общественное признание, материальные блага и жизненные удобства. В сущности, людям свойственны как биологически, так и социально обусловленные потребности. Мы стремимся приобрести пищу, одежду, кров, множество товаров и услуг, которые ассоциируются у нас с высоким уровнем жизни. Мы также наделены определенными способностями и окружены множеством материальных благ - природных и произведенны
6 руб.
Лабораторная работа №1 по дисциплине: «Языки программирования высокого уровня». «Первое приложение на DELPHI»I. Универсальный вариант.
naviS
: 19 сентября 2012
Работа содержит инструкцию по подгонке программы под свои данные, поэтому подойдёт для любого варианта.
Цель работы: Ознакомиться с основными приемами работы в среде DELPHI
Работа состоит из двух заданий:
1. создание формы с надписями - "здраствуй, мир", "привет, студент"
2. создание формы с персональными данными: ФИО, название группы и последние две цифры шифра студента.
В конце работы - ответы на контрольные вопросы.
150 руб.