Теория вероятности (решение 6 задач)
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Задача 1
В коробке 10 карандашей, среди которых есть четыре зеленых. Берутся наугад три карандаша. Найти вероятность того, что среди них не будет ни одного зеленого.
Задача 2
Для обслуживания пассажиров используются автобусы трех марок: первой марки 10 штук, второй 12, третьей 8 штук. Вероятность поломки автобуса на линии для первой марки равна 0,1, для второй 0,05, для третьей 0,15. Произошла поломка автобуса на линии. Какова вероятность, что поломался автобус первой марки?
Задача 3
Завод отправил на баз 500 изделий. Вероятность повреждения изделия в пути равна 0,0004. Найти вероятность того, что в пути будет повреждено: а) ровно 2 изделия; б) менее двух; в) более двух.
Задача 4
Случайная величина Х задана функцией распределения (интегральной функцией) F(x). Требуется: а) найти дифференциальную функцию f(x) (плотность распределения вероятностей), б) найти математическое ожидание и дисперсию случайной величины, в) построить графики интегральной и дифференциальной функций.
Задача 5
Известны математическое ожидание а и среднее квадратичное отклонение нормально распределенной случайной величины Х. Найти вероятность попадания этой величины в заданный интервал ( ).
а=4, =5,
Задача 6
Дана выборка в виде распределения частот. Найти распределение относительных частот, построить полигон и гистограмму, получить несмещенные оценки генеральной средней и генеральной дисперсии.
В коробке 10 карандашей, среди которых есть четыре зеленых. Берутся наугад три карандаша. Найти вероятность того, что среди них не будет ни одного зеленого.
Задача 2
Для обслуживания пассажиров используются автобусы трех марок: первой марки 10 штук, второй 12, третьей 8 штук. Вероятность поломки автобуса на линии для первой марки равна 0,1, для второй 0,05, для третьей 0,15. Произошла поломка автобуса на линии. Какова вероятность, что поломался автобус первой марки?
Задача 3
Завод отправил на баз 500 изделий. Вероятность повреждения изделия в пути равна 0,0004. Найти вероятность того, что в пути будет повреждено: а) ровно 2 изделия; б) менее двух; в) более двух.
Задача 4
Случайная величина Х задана функцией распределения (интегральной функцией) F(x). Требуется: а) найти дифференциальную функцию f(x) (плотность распределения вероятностей), б) найти математическое ожидание и дисперсию случайной величины, в) построить графики интегральной и дифференциальной функций.
Задача 5
Известны математическое ожидание а и среднее квадратичное отклонение нормально распределенной случайной величины Х. Найти вероятность попадания этой величины в заданный интервал ( ).
а=4, =5,
Задача 6
Дана выборка в виде распределения частот. Найти распределение относительных частот, построить полигон и гистограмму, получить несмещенные оценки генеральной средней и генеральной дисперсии.
Похожие материалы
Теория вероятностей
Aleksey0697
: 19 марта 2019
Вариант 5. Из 8 карточек с буквами А, Б, В, Г, Д, Е, Ж, З наугад берут три карточки и расставляют в случайном порядке. Найти вероятность того, что получится слово ГАЗ.
Вариант 5. В автопарке имеются автомобили трех марок, всех поровну. Автомобиль первой марки исправен с вероятностью 0,8, второй марки - с вероятностью 0,7, третьей - с вероятностью 0,85. а) Найти вероятность того, что произвольный автомобиль автопарка исправен. б) Найти вероятность того, что исправный автомобиль является третьей м
50 руб.
Теория вероятности
Mikola456
: 27 мая 2016
Задание 3.
В партии из 6 изделий содержится 3 бракованных. Контролер проверяет изделия последовательно по одному до тех пор, пока не появляется бракованное. Тогда вся партия возвращается изготовителю. Найти ряд распределения этой случайной величины, математическое ожидание, дисперсию и СКО, а также вероятность того, что число проверенных изделий будет больше двух.
Задание 4.
Непрерывная случайная величина задана функцией распределения:
Найти параметр С, плотность распределения, математическое
500 руб.
Теория вероятностей
татьяна89
: 3 февраля 2011
Задача 10. 8. вариант 8
Вероятность хотя бы одного попадания при двух выстрелах равна 0,99. Найти вероятность четырех попаданий при пяти выстрелах.
Задача 11.8. Вероятность появления события в каждом из независимых испытаний равна 0,2. Найти вероятность того, что событие наступит 12 раз в 100 испытаний.
Задача 12.8.
требуется найти: а) математическое ожидание; б) дисперсию; в) среднее квадратическое отклонение дискретной случайной величины Х по заданному закону ее распределения, заданному т
55 руб.
Теория Вероятностей.
dimanis
: 21 января 2011
Билет № 19
1. Моменты распределения и другие числовые характеристики случайной величины.
2. График плотности распределения случайной величины X имеет вид:
Найти интегральную функцию и вероятность попадания X на отрезок [0;2].
3. В группе 2 человека сдали экзамен на «5», 6 человек – на «4», 12 – на «3», 3 – на «2». Найти вероятность того, что случайно взятый человек сдал экзамен на «4» или «5».
4. По каналу связи передается кодовая комбинация из 5 символов. Вероятность искажения одного символа
50 руб.
Теория вероятностей.
татьяна89
: 20 января 2011
Билет № 12
1. Распределение Пуассона и его характеристики
2. Четырехзначный номер не содержит нулей. Какова вероятность, что он содержит одну семерку»?
3. По цифровому каналу передаются символы "О" и "I", причем доля передаваемых нулей вдвое больше, чем единиц. Вероятность искажения символа "О" равна 0,06, вероятность искажения "I" - 0,09. Найти вероятность искажения символа при передаче по этому каналу.
4. Вероятность наступления события в каждом из независимых испытаний равна 0,8. Сколько нужн
50 руб.
Теория вероятности
1231233
: 17 сентября 2010
Вариант №8
Текст 1. Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове? При p=0,6 k=3
Текст 2. В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Текст 3. В типографии имеется K печатных маши
23 руб.
Теория вероятности
BOND
: 9 февраля 2010
Экзамен. билет №15 сесместр 4 СИБГУТИ
1. Дискретная двумерная случайная величина и её распределение.
2. Интегральная функция распределения случайной величины X имеет вид:
Найти коэффициент А, плотность f(x) и вероятность попадания Х в интервал [1;2].
3. Из аэровокзала отправились 2 автобуса-экспресса к трапам самолётов. Вероятность своевременного прибытия каждого автобуса в аэропорт равна 0,95. Найти вероятность того, что а) оба автобуса опоздают; б) хотя бы один автобус прибудет вовремя.
4. Пр
150 руб.
Теория вероятности
Один
: 8 декабря 2008
15 задач с решениями
Закон распределения F(xy)
Вариант №22
1) Три баскетболиста бросают мяч в корзину. Пусть событие А={мяч забросил 1-ый} В=2-ой, С=3-ий, D={Произошло не менее 2-х попаданий} и изобразить его диаграммой Вена.
2) В ящике находятся карточки с цифрами 1-9, которые вынимаются наугад и располагаются в порядке появления. Какова вероятность того, что цифры 4 и 5 окажутся рядом?
3) На отрезок [0;6] случайно бросают две точки. Найти вероятность того, что расстояние их от концов не
Другие работы
Эффект Ганна и его использование, в диодах, работающих в генераторном режиме
elementpio
: 30 сентября 2013
Эффект Ганна и его использование, в диодах, работающих в генераторном режиме.
Для усиления и генерации колебаний СВЧ-диапазона может быть использована аномальная зависимость скорости электронов от напряженности электрического поля в некоторых полупроводниковых соединениях, прежде всего в арсениде галлия. При этом основную роль играют процессы, происходящие в объеме полупроводника, а не в p-n-переходе. Генерацию СВЧ-колебаний в однородных образцах GaAs n-типа при напряженности постоянн
5 руб.
Экзаменационная работа По дисциплине: «Финансовые рынки» вариант 6
Samolyanova
: 7 ноября 2017
Вариант 6
1.Основной доход дилера формируется за счет разницы ....
2. Саморегулируемая организация является организацией
- коммерческой
- некоммерческой
3. Депозитарий распоряжаться ценными бумагами депонента
-может
-не может
-может только по поручению
4. Предметом залога по облигациям с
150 руб.
Экзамен по курсу “Экономико-математические методы и модели в отрасли связи”. 4-й вариант
ДО Сибгути
: 31 января 2016
Билет №4
1. Принятие решений методами имитационного моделирования (на примере имитационной модели управления запасами).
2. Принятие решений по организации перевозки грузов.
3. Задача:
В распоряжении организации, выполняющей этот комплекс работ, имеется Р = 23 рабочих, которых необходимо обеспечить непрерывной и равномерной работой. Используя имеющиеся запасы времени по некритическим работам, скорректируйте сеть с учетом ограничения по количеству рабочих.
Исходные данные:
путь дни рабочие
1(
90 руб.
Контрольная работа. Архитектура вычислительных систем
Fayst13
: 4 сентября 2015
Глава 1. Способы организации и типы ВС
Вопрос 5. Из каких блоков состоит центральный процессор в архитектуре фон Неймана и какие они выполняют функции?
Глава 2. Параллельная обработка информации
Вопрос 5. Какие существуют классификации ВС с параллельной архитектурой?
Глава 3. Конвейерная архитектура
Вопрос 5. Какие существуют программные и аппаратные способы для устранения структурной коллизии?
200 руб.