Контрольная работа по дисциплине: Алгебра и геометрия. Вариант №2
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды A_1 A_2 A_3 A_4 найти:
1. длину ребра A_1 A_2
2. угол между ребрами A_1 A_2 и A_1 A_4
3. площадь грани A_1 A_2 A_3
4. объем пирамиды A_1 A_2 A_3 A_4
A_1 (1;8;2) A_2 (5;2;6;) A_3 (0;-1;-2) A_4 (-2;3;-1)
Задача 2. Даны координаты вершин пирамиды A_1 A_2 A_3 A_4 найти:
1. длину ребра A_1 A_2
2. угол между ребрами A_1 A_2 и A_1 A_4
3. площадь грани A_1 A_2 A_3
4. объем пирамиды A_1 A_2 A_3 A_4
A_1 (1;8;2) A_2 (5;2;6;) A_3 (0;-1;-2) A_4 (-2;3;-1)
Дополнительная информация
зачет
Похожие материалы
Контрольная работа по дисциплине "Алгебра и геометрия". Вариант №2
Sushserg
: 26 января 2021
Вариант № 2
2. Решить систему уравнений методом Крамера и методом Гаусса
2. Для данной матрицы найти обратную матрицу
.
3. Даны векторы
Найти:
a) угол между векторами и ;
b) проекцию вектора на вектор ;
c) векторное произведение ;
d) площадь треугольника, построенного на векторах .
4. Даны координаты вершин треугольника
a) составить уравнение стороны АВ
b) составить уравнение высоты АD
c) найти длину медианы ВЕ
d) найти точку пересечения высот треугольника АВС.
5. Даны к
100 руб.
Контрольная работа по дисциплине: Алгебра и геометрия. Вариант №2
Roma967
: 27 февраля 2016
1. Решить систему уравнений методом Крамера и методом Гаусса:
4x-5y-2z=3
x+2y-z=3
2x-7y+2z=3
2. Для данной матрицы найти обратную матрицу:
A=
(1 0 -1)
(2 1 0)
(-1 1 0)
3. Даны вектора: a1={2;1;2}, a2={-1;2;4}, a2={1;2;3}
Найти:
a) угол между векторами a1 и a2;
b) проекцию вектора a1 на вектор a2;
c) векторное произведение a1*a2;
d) площадь треугольника, построенного на векторах a1,a2.
4. Даны координаты вершин треугольника:
A(1;0); B(-1;2); C(-5;-2)
a) составить уравнение стороны
500 руб.
Контрольная работа по дисциплине: Алгебра и геометрия. Вариант №2
Елена22
: 29 октября 2013
Контрольная работа по дисциплине: Алгебра и геометрия. Вариант №2
1.2. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
см. скриншот 1
2.2. Даны координаты вершин пирамиды А1А2А3А4:
см. скриншот 2
Найти:
1. длину ребра;
2. угол между ребрами;
3. площадь грани;
4. уравнение плоскости ;
5. объём пирамиды.
170 руб.
Контрольная работа. Алгебра и геометрия. Вариант №2.
rimmabatoeva
: 18 июня 2018
Контрольная работа по предмету Алгебра и Геометрия. Вариант 2
Полностью скриншот задания во вложенном файле на картинке
Задание 1. Решить систему уравнений методом Крамера и методом Гаусса
Задание 2. Для данной матрицы найти обратную матрицу
Задание 3. Даны векторы
Найти:
1) угол между векторами и ;
2) проекцию вектора на вектор ;
3) векторное произведение ;
4) площадь треугольника, построенного на векторах .
Задание 4. Даны координаты вершин треугольника
А(1;0), В (-1;2), С (
150 руб.
Контрольная работа по алгебре и геометрии. Вариант №2
rahatlukum1
: 15 апреля 2014
Задача 1
Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2
Даны координаты вершин пирамиды А1А2А3А4.
Найти: длину ребра А1А2; угол между ребрами А1А2 и А1А4; площадь грани А1А2А3;
уравнение плоскости А1А2А3; объём пирамиды А1А2А3А4.
А1 (1; 8; 2), А2 (5; 2; 6), А3 (0; -1; -2), А4 (-2; 3; -1).
50 руб.
Алгебра и геометрия. Контрольная работа. Вариант №2
step72
: 18 мая 2013
1.
Дана система трёх линейных уравнений. Найти решение её методом Крамера.
Дана система трёх линейных уравнений. Найти решение её методом Гаусса.
x-2y+3z=6
2x+3y-4z=20
3x-2y-2z=6
2.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
А1 ( 1; 8; 2), А2 ( 5; 2; 6), А3 ( 0; -1; -2), А4 (-2; 3; -1).
40 руб.
Алгебра и геометрия. Контрольная работа. Вариант №2
LekaM
: 22 марта 2013
1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
2. Даны координаты вершин пирамиды А1А2А3А4.
А1 (1; 8; 2), А2 (5; 2; 6), А3 (0; -1; -2), А4 (-2; 3; -1).
Найти:
1) длину ребра А1А2;
2) угол между ребрами А1А2 и А1А4;
3) площадь грани А1А2А3;
4) уравнение плоскости А1А2А3.
5) объём пирамиды А1А2А3А4.
60 руб.
Контрольная работа №1 по дисциплине "Алгебра и геометрия". ВАРИАНТ 2
skorovera
: 27 февраля 2014
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
х-2у+3z=6
2x+3y-4z=20
3x-2y-2z=6
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
А1 ( 1; 8; 2), А2 ( 5; 2; 6), А3 ( 0; -1; -2), А4 (-2; 3; -1).
80 руб.
Другие работы
Экзаменационная работа по дисциплине: Теоретические основы современных технологий беспроводной связи. Билет 62
Учеба "Под ключ"
: 10 октября 2022
Билет No62
Вопрос 8 (множественный выбор – один правильный ответ)
Как правильно расшифровывается аббревиатура WPAN?
Wi-Fi Protected Access Network – сеть защищённого Wi-Fi доступа.
Wireless Personal Area Network – беспроводная персональная сеть.
World Pilot Association Network – сеть мировой ассоциации пилотов.
Вопрос 12 (множественный выбор – несколько верных ответов)
Какие из приведённых ниже систем и сетей являются системами подвижной связи?
Система телефонной связи общего пользования.
Сеть
1000 руб.
Экономика и организация производства
evelin
: 13 ноября 2013
1. МАРКЕТИНГОВЫЕ ИССЛЕДОВАНИЯ
1.1. Расчет конкурентоспособности изделия
1.2. Краткая характеристика предприятия
1.3. Технология изготовления изделия и его частей
2. РАСЧЕТ ПОТРЕБНОСТИ В ОСНОВНЫХ ПРОИЗВОДСТВЕННЫХ ФОНДАХ
2.1 Расчет потребности в оборудовании
2.2 Расчет потребности в транспортных средствах и вспомогательном оборудовании
2.3 Расчет потребности в площадях
2.4. Расчет потребности в инструменте и оснастке
3. ФАКТИЧЕСКИЕ ПОТРЕБНОСТИ И СТОИМОСТЬ МАТЕРИАЛЬНЫХ РЕСУРСОВ
3.1 Расчет стоимости
5 руб.
Сухов А.В. Гидропривод 551800 Задача 7.2.3 Вариант д
Z24
: 10 января 2026
Определить рабочий объём V, подачу Q пластинчатого насоса двукратного действия, а также потребляемую мощность Nп и момент М, подведенный к валу насоса, если частота вращения ротора n, объёмный КПД η0, полный КПД ηн, абсолютное давление на входе в насос рв, на выходе из насоса рвых, радиус ротора r, радиус статора R, ширина пластины b, число пластин z.
150 руб.
Проведение диагностики производственной системы на основе использования экспертной информации
Slolka
: 2 апреля 2014
Тема работы: "Проведение диагностики производственной системы на основе использования экспертной информации".
Цель работы: приобретение практических навыков диагностики производственной системы на основе использования информации экспертной оценки состояния элементов данной системы с применением прикладных программных продуктов "Prima"и "Excel".
Общие положения
Чаще всего предприятиям, нуждающимся в проведении диагностики, проблема не очевидна. Для того, чтобы выяснить как устранить недостатки не
5 руб.