Контрольная работа по дисциплине: Теория массового обслуживания. Вариант №12

Состав работы

material.view.file_icon E070AB48-4239-4199-89C1-15B5C181CF08.doc
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Задача №1
В комнате имеется три окна (назовем их первое, второе и третье) на одном из окон стоит цветок. В зависимости от погодных условий хозяйка каждый день переставляет цветок на другое окно (или оставляет на том же окне) со следующими вероятностями: . Процесс перемещения цветка описывается однородной цепью Маркова.
0,25 0,5 0,25
0,4 0 0,6
0,5 0,5 0
Определить:1. Стационарные вероятности состояний системы.
2. Вероятности состояний системы на 5-й день, если в нулевой день цветок стоял на втором окне.

Задача №2.
Имеется двухканальная марковская СМО с отказами (M/M/2). На ее вход поступает поток заявок с интенсивностью =2 заявки/ч. Среднее время обслуживания одной заявки х=0,8 ч. Каждая обслуженная заявка приносит доход с=4 руб. Содержание каждого канала обходится 2 руб./ч. Решить: выгодно или невыгодно в экономическом отношении увеличить число каналов СМО до трех.

Задача №3.
Рассматривается работа электронного прибора. Среднее время безотказной работы – 42 часа. Когда прибор ломается, вызывают техника, который устраняет неисправность в среднем за 4 часа. При этом на диагностику неисправности у техника уходит в среднем 30 мин. Один раз в месяц техник производит профилактику в среднем в течение 3 часов. Считать все потоки Марковской системы простейшими.
Требуется: 1. Определить состояния системы массового обслуживания.
  2. Нарисовать диаграмму интенсивностей переходов.
  3. Составить уравнения равновесия.
  4. Определить стационарные вероятности системы.
  5. Определить время возвращения в каждое состояние.

Дополнительная информация

Оценка - отлично!
Контрольная работа по дисциплине: Теория массового обслуживания. вариант №12
Задача No1 Дана неоднородная дискретная цепь Маркова со следующими матрицами перехода: . На последующих шагах матрицы повторяются, начиная с P(1). Найти матрицы перехода H(l,n) за n – l шагов при: • l = 5 n = 10; • l = 14 n = 13. Задача No2 Известно, что приход покупателей в некоторый магазин хорошо описывается простейшим потоком. Установлено, что с вероятностью 1⁄2 в течение 1 минуты ни один покупатель в магазин не заходит. Какова вероятность того, что в течение двух минут зайдёт один покуп
330 руб.
Контрольная работа по дисциплине: Теория массового обслуживания. Вариант №12
Задача No1 Дана неоднородная дискретная цепь Маркова со следующими матрицами перехода: На последующих шагах матрицы повторяются, начиная с P(1). Найти матрицы перехода H(l,n) за n – l шагов при: • l = 5 n = 10; • l = 14 n = 13. Задача No2 Известно, что приход покупателей в некоторый магазин хорошо описывается простейшим потоком. Установлено, что с вероятностью 1⁄2 в течение 1 минуты ни один покупатель в магазин не заходит. Какова вероятность того, что в течение двух минут зайдёт один покуп
User Колька : 19 сентября 2016
130 руб.
Контрольная работа по дисциплине: Теория массового обслуживания. Вариант №12
Контрольная работа по дисциплине: Теория массового обслуживания. Вариант №12
Задача No1 Дана неоднородная дискретная цепь Маркова со следующими матрицами перехода: P(1)= (0.3 0.46 0.24) (0 0.91 0.09) (0.53 0 0.47) P(2)= (0 0.32 0.68) (0.43 0.21 0.36) (0.54 0 0.46) P(3)= (0 0.01 0.99) (0.82 0 0.18) (0.33 0.67 0) На последующих шагах матрицы повторяются, начиная с P(1). Найти матрицы перехода H(l,n) за n – l шагов при: • l = 5 n = 10; • l = 14 n = 13. Задача No2 Известно, что приход покупателей в некоторый магазин хорошо описывается п
User Roma967 : 6 мая 2016
600 руб.
Контрольная работа по дисциплине: Теория массового обслуживания. Вариант №12 promo
Контрольная работа по дисциплине "Теория массового обслуживания". Вариант №12.
Задача №1. В комнате имеется три окна (назовем их первое, второе и третье) на одном из окон стоит цветок. В зависимости от погодных условий хозяйка каждый день переставляет цветок на другое окно (или оставляет на том же окне) со следующими вероятностями: Процесс перемещения цветка описывается однородной цепью Маркова. Определить: 1. Стационарные вероятности состояний системы. 2. Вероятности состояний системы на 5-й день, если в нулевой день цветок стоял на втором окне. Задача №2. Имеется дв
User freelancer : 17 апреля 2016
59 руб.
Контрольная работа по дисциплине "Теория массового обслуживания". Вариант №12.
400 руб.
Контрольная работа по дисциплине: Теория массового обслуживания
Контрольная работа по дисциплине: Теории массового обслуживания
Вариант 2. Задача No1. Матрица вероятностей перехода однородной дискретной цепи Маркова имеет вид: . Распределение вероятностей состояний цепи в момент времени t = 0 определяется вектором: . Найти: 1. Распределение по состояниям в момент времени t = 2. 2. Стационарное распределение. Задача No2. Рассматривается установившийся режим работы СМО типа М/M/1/K. Интенсивность входного потока и интенсивность обслуживания соответственно. 1. Нарисовать диаграмму интенсивностей переходов при K = 3
User BuKToP89 : 31 марта 2016
70 руб.
Контрольная работа по дисциплине: Теории массового обслуживания
Контрольная работа по дисциплине: Теория массового обслуживания
Промежуточное звено компьютерной сети Supernet обслуживает запросы от 5 абонентов по двум телефонным каналам. Компьютер каждого абонента выходит на связь по любому свободному каналу. Если же оба канала заняты, абонент получает отказ. Администрация решила провести статистическое исследование для того, чтобы оценить целесообразность реконструкции сети (убрать абонента 4 и добавить ещё один канал). Специальная программа фиксировала продолжительность работы каждого компьютера (таблица 3) и число обр
User aikys : 14 февраля 2016
50 руб.
Контрольная работа по дисциплине: Теория массового обслуживания
Задача №1. В учениях участвуют два корабля A и B, которые одновременно производят выстрелы друг в друга через равные промежутки времени. При каждом обмене выстрелами корабль A поражает корабль B с вероятностью 0.6, а корабль B поражает корабль A с вероятностью 0.75. Предполагается, что при любом попадании корабль выходит из строя. Определить матрицу вероятностей переходов, если состояниями цепи Маркова являются комбинации: Е1 – оба корабля в строю, Е2 – в строю только корабль A, Е3 – в строю тол
User lebed-e-va : 28 апреля 2015
150 руб.
Административные правонарушения в сельском хозяйстве
Понятие административного правонарушения появилось в 80-х г. Впервые в Кодексе об административных правонарушениях в 84 г. было сформулировано понятие правонарушения. 4 октября 2000 года Государственной Думой был принят в целом проект Кодекса РФ об административных правонарушениях и направлен для рассмотрения в Совет Федерации и Президенту РФ. Как известно, ныне действующий КоАП РСФСР, принятый в 1984 году, практически не может выполнять свою роль: не обеспечиваются права граждан и юридических л
User alfFRED : 8 августа 2013
15 руб.
Контрольная работа по дисциплине: «Компьютерное моделирование». Вариант №26.
1 Исходные данные на контрольную работу Заданы модели систем связи с: битовой скоростью передачи Rb, Мбит/с; модуляцией 4, 8 PSK, 16, 64, 256 QAM; фильтром с коэффициентом сглаживания ROF; каналом с шумом AWGN с отношением Eb/N0, dB. Таблица 1 – Исходные данные No вар Скорость Rb, Мбит/с Модуляция ROF 26 1.3 16-QAM 256-QAM 0.6 1.0
User teacher-sib : 30 августа 2023
800 руб.
promo
Генри Форд
Маленький но доступный доклад про Генри Форда План 1. Биография 2. Взгляды и убеждения 3. Первые автомобили 4. Современные и общеизвестные автомобили 5. Необычные автомобили
User Dragonleny : 8 апреля 2023
100 руб.
Информатика, ЛБ №1-5, без варианта
ОБЪЯСНИТЕЛЬНАЯ ЗАПИСКА Создание сложных таблиц методом рисования Задача 1. Завод производит электронные приборы трех видов (прибор А, прибор В и прибор С), используя при сборке микросхемы трех видов (тип 1, тип 2 и тип 3).
User cotikbant : 13 сентября 2017
100 руб.
up Наверх