Контрольная работа по дисциплине: Теория вероятностей математическая статистика и случайные процессы. Вариант № 8
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Задача No 1.
Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове? При p=0,6 k=3
Задача No 2.
В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
При K=4 L=6 M=5 N=6 P=3 R=3
Задача No 3.
В типографии имеется K печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна P. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше R. При K=4 P=0,9 R=2
Задача No 4.
Непрерывная случайная величина задана ее функцией распределения.
Найти параметр С, плотность распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал [a , b ] и квантиль порядка p. При a=1; b=10; F(x)=c(x-1); =2; =5; p=0,85
Задача No 5.
Продолжительность телефонного разговора распределена по показательному закону с параметром l (1/мин.). Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%? При (лямбда)=0,35
Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове? При p=0,6 k=3
Задача No 2.
В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
При K=4 L=6 M=5 N=6 P=3 R=3
Задача No 3.
В типографии имеется K печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна P. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше R. При K=4 P=0,9 R=2
Задача No 4.
Непрерывная случайная величина задана ее функцией распределения.
Найти параметр С, плотность распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал [a , b ] и квантиль порядка p. При a=1; b=10; F(x)=c(x-1); =2; =5; p=0,85
Задача No 5.
Продолжительность телефонного разговора распределена по показательному закону с параметром l (1/мин.). Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%? При (лямбда)=0,35
Дополнительная информация
Оценка - отлично!
Преподаватель: Разинкина Т. Э.
Преподаватель: Разинкина Т. Э.
Похожие материалы
Контрольная работа по дисциплине: Теория вероятности, математическая статистика и случайные процессы
pepol
: 16 декабря 2014
Задача № 10.7
Два стрелка произвели по одному выстрелу по мишени. Вероятность поражения мишени каждым из стрелков равна 0,9.
Задача № 11.7
Вероятность появления события в каждом из независимых испытаний равна 0,2.
Задача № 12.7
Найти:
а) математическое ожидание;
б) дисперсию;
в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
Задача № 13.7
Заданы математическое ожидание а и среднее квадратическое отклонение s норм
50 руб.
Теория вероятностей математическая статистика и случайные процессы
Кирилл81
: 26 января 2017
Задача 1 (текст 2): вероятность появления поломок на каждой из k = 4 соединительных линий равна p = 0,1. Какова вероятность того, что хотя бы две линии исправны?
Решение:
В данном случае имеется последовательность испытаний по схеме Бернулли, т.к. испытания независимы, и вероятность успеха (соединительная линия будет исправна) р=1-0,1=0,9 одинакова во всех испытаниях. Тогда по формуле Бернулли при n=4, р=0,9, q=1-p=1-0,9=0,1
80 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Билет № 9
1. Тема: Независимость событий.
Задача: Монету подбросили два раза. События: А – первый раз выпал герб, В– число выпавших гербов больше числа выпавших цифр. Зависимы ли эти события?
2. Тема: Мат. ожидание непрерывной с.в.
Задача: Случайная величина задана плотностью распределения. Найти её мат. ожидание.
150 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Контрольная работа. Вариант 9,
По дисциплине: Теория вероятностей, математическая статистика и случайные процессы
Задача 1
Вероятность появления поломок на каждой из 4 соединительных линий равна 0,25. Какова вероятность того, что хотя бы две линии исправны?
200 руб.
Теория вероятностей, математическая статистика и случайные процессы
1231233
: 24 апреля 2010
Задача 1. Вероятность появления поломок на каждой из 6 соединительных линий равна 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2. В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3. В типографии имеется 5 печатных машин. Для каждой
23 руб.
Контрольная работа по дисциплине: Теория вероятностей математическая статистика и случайные процессы. Вариант №3
Jack
: 14 февраля 2017
Вариант No3
Задача 1:
Вероятность появления поломок на каждой из 6 соединительных линий равна 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2:
В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3:
В типографии имеется 5 печатных машин
350 руб.
Контрольная работа по дисциплине: Теория вероятностей, математическая статистика и случайные процессы. Вариант 01.
freelancer
: 24 августа 2016
Текст 2. Вероятность появления поломок на каждой из 4 соединительных линий равна 0,1. Какова вероятность того, что хотя бы две линии исправны?
Текст 3. В одной урне 5 белых шаров и 5 чёрных шаров, а в другой – 4 белых и 7 чёрных. Из первой урны случайным образом вынимают 2 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 3 шара. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Текст 4. В типографии имеется 4 печатные машины. Для каждой маш
80 руб.
Контрольная работа по дисциплине: Теория вероятностей математическая статистика и случайные процессы. Вариант 07.
freelancer
: 8 августа 2016
Задача 1:
Вероятность появления поломок на каждой из 5 соединительных линий равна 0,15. Какова вероятность того, что хотя бы две линии исправны?
Задача 2:
В одной урне 4 белых шаров и 5 чёрных шаров, а в другой – 5 белых и 4 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3:
В типографии имеется 6 печатных машин. Для каждо
80 руб.
Другие работы
Гидроаппарат клапанный 59.000
bublegum
: 13 апреля 2020
Гидроаппарат клапанный 59.000 сборочный чертеж
Гидроаппарат клапанный 59.000 спецификация
Гидроаппарат клапанный 59.000 3d модель
Корпус 59.001
Крышка 59.002
Шпиндель 59.003
Крышка сальника 59.004
Седло клапана 59.005
Клапан 59.006
Клапанный гидроаппарат предназначен для перекрытия трубопровода гидросистемы. Он состоит из корпуса 1 с прикрепленной к нему крышкой 2, через которую пропущен шпиндель 3. К шпинделю присоединен клапан 6. Чтобы жидкость не просачивалась между корпусом и крышкой, уста
600 руб.
Реконструкция подстанции 110 10 кВ Красногорской ТЭЦ
night_fox
: 17 мая 2009
Дипломная работа содержит 134 листа пояснительной записки. 12 чертежей (компас)
Бруй Л.П. Техническая термодинамика и теплопередача ТОГУ Задача 5 Вариант 96
Z24
: 14 января 2026
Определить потерю теплоты одним погонным метром стального паропровода с наружным диаметром 100 мм в результате лучистого теплообмена. Паропровод расположен в кирпичном канале, имеющем поперечное сечение 300×300 мм. Температуру наружной поверхности паропровода t1 и внутренней поверхности стенок канала t2 принять из табл. 3. Степень черноты окисленной стали и красного кирпича см. в. приложении 1.
В конце задачи следует ответить письменно на следующие вопросы:
1. Что называется степенью черно
180 руб.
Теплотехника КемТИПП 2014 Задача Б-4 Вариант 49
Z24
: 12 февраля 2026
Изолированный горизонтальный трубопровод проложен на открытом воздухе, температура которого tж. Температура наружной поверхности изоляции равна tст, наружный диаметр изоляции равен d.
Определить коэффициент теплоотдачи и тепловые потери с 1 м длины трубопровода. Во сколько раз возрастут тепловые потери, если трубопровод будет обдуваться поперечным потоком воздуха со скоростью ω?
200 руб.