Контрольная работа по дисциплине: Теория вероятностей математическая статистика и случайные процессы. Вариант № 8
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Задача No 1.
Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове? При p=0,6 k=3
Задача No 2.
В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
При K=4 L=6 M=5 N=6 P=3 R=3
Задача No 3.
В типографии имеется K печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна P. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше R. При K=4 P=0,9 R=2
Задача No 4.
Непрерывная случайная величина задана ее функцией распределения.
Найти параметр С, плотность распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал [a , b ] и квантиль порядка p. При a=1; b=10; F(x)=c(x-1); =2; =5; p=0,85
Задача No 5.
Продолжительность телефонного разговора распределена по показательному закону с параметром l (1/мин.). Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%? При (лямбда)=0,35
Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове? При p=0,6 k=3
Задача No 2.
В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
При K=4 L=6 M=5 N=6 P=3 R=3
Задача No 3.
В типографии имеется K печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна P. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше R. При K=4 P=0,9 R=2
Задача No 4.
Непрерывная случайная величина задана ее функцией распределения.
Найти параметр С, плотность распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал [a , b ] и квантиль порядка p. При a=1; b=10; F(x)=c(x-1); =2; =5; p=0,85
Задача No 5.
Продолжительность телефонного разговора распределена по показательному закону с параметром l (1/мин.). Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%? При (лямбда)=0,35
Дополнительная информация
Оценка - отлично!
Преподаватель: Разинкина Т. Э.
Преподаватель: Разинкина Т. Э.
Похожие материалы
Контрольная работа по дисциплине: Теория вероятности, математическая статистика и случайные процессы
pepol
: 16 декабря 2014
Задача № 10.7
Два стрелка произвели по одному выстрелу по мишени. Вероятность поражения мишени каждым из стрелков равна 0,9.
Задача № 11.7
Вероятность появления события в каждом из независимых испытаний равна 0,2.
Задача № 12.7
Найти:
а) математическое ожидание;
б) дисперсию;
в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
Задача № 13.7
Заданы математическое ожидание а и среднее квадратическое отклонение s норм
50 руб.
Теория вероятностей математическая статистика и случайные процессы
Кирилл81
: 26 января 2017
Задача 1 (текст 2): вероятность появления поломок на каждой из k = 4 соединительных линий равна p = 0,1. Какова вероятность того, что хотя бы две линии исправны?
Решение:
В данном случае имеется последовательность испытаний по схеме Бернулли, т.к. испытания независимы, и вероятность успеха (соединительная линия будет исправна) р=1-0,1=0,9 одинакова во всех испытаниях. Тогда по формуле Бернулли при n=4, р=0,9, q=1-p=1-0,9=0,1
80 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Билет № 9
1. Тема: Независимость событий.
Задача: Монету подбросили два раза. События: А – первый раз выпал герб, В– число выпавших гербов больше числа выпавших цифр. Зависимы ли эти события?
2. Тема: Мат. ожидание непрерывной с.в.
Задача: Случайная величина задана плотностью распределения. Найти её мат. ожидание.
150 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Контрольная работа. Вариант 9,
По дисциплине: Теория вероятностей, математическая статистика и случайные процессы
Задача 1
Вероятность появления поломок на каждой из 4 соединительных линий равна 0,25. Какова вероятность того, что хотя бы две линии исправны?
200 руб.
Теория вероятностей, математическая статистика и случайные процессы
1231233
: 24 апреля 2010
Задача 1. Вероятность появления поломок на каждой из 6 соединительных линий равна 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2. В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3. В типографии имеется 5 печатных машин. Для каждой
23 руб.
Контрольная работа по дисциплине: Теория вероятностей математическая статистика и случайные процессы. Вариант №3
Jack
: 14 февраля 2017
Вариант No3
Задача 1:
Вероятность появления поломок на каждой из 6 соединительных линий равна 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2:
В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3:
В типографии имеется 5 печатных машин
350 руб.
Контрольная работа по дисциплине: Теория вероятностей, математическая статистика и случайные процессы. Вариант 01.
freelancer
: 24 августа 2016
Текст 2. Вероятность появления поломок на каждой из 4 соединительных линий равна 0,1. Какова вероятность того, что хотя бы две линии исправны?
Текст 3. В одной урне 5 белых шаров и 5 чёрных шаров, а в другой – 4 белых и 7 чёрных. Из первой урны случайным образом вынимают 2 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 3 шара. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Текст 4. В типографии имеется 4 печатные машины. Для каждой маш
80 руб.
Контрольная работа по дисциплине: Теория вероятностей математическая статистика и случайные процессы. Вариант 07.
freelancer
: 8 августа 2016
Задача 1:
Вероятность появления поломок на каждой из 5 соединительных линий равна 0,15. Какова вероятность того, что хотя бы две линии исправны?
Задача 2:
В одной урне 4 белых шаров и 5 чёрных шаров, а в другой – 5 белых и 4 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3:
В типографии имеется 6 печатных машин. Для каждо
80 руб.
Другие работы
Контрольная работа по дисциплине: Экология. Вариант 23
Учеба "Под ключ"
: 10 октября 2022
Задание на контрольную работу
Задание выбирается по таблице – предпоследней и последней цифре пароля.
Таблица 1 – Вариант задания
Вариант: 23
Номера вопросов: 2, 71
Номера задач: 2, 5
Номер теста: 6
2. Живое вещество биосферы и его основные признаки.
71. Федеральный закон об отходах производства и потребления: основные положения.
Задача №2
Сделать оценку качества поверхностного источника питьевого водоснабжения населенного пункта по степени опасности загрязнения химическими веществами. Приве
800 руб.
Теория электрических цепей. Ч 2-я. ЛР №6
tusur
: 16 апреля 2016
1. Цель работы
Исследование частотной характеристики ослабления пассивного однозвенного амплитудного корректора второго порядка и активного однозвенного корректора первого порядка.
2. Исследование пассивного однозвенного амплитудного корректора.
2.1. Схема собранного амплитудного корректора представлена на рисунке 1.
Данные элементов схемы корректора:
L1 = 1 мГн, C1 = 63,326 нФ, R1 = 500 Ом, R0= 210 Ом.
100 руб.
Лабораторная работа №№ 1 по предмету: Электропитание устройств и систем связи. Ознакомление с программой Electronics Workbench. Вариант №6
ДО Сибгути
: 26 февраля 2016
1. Цель работы
Получение практических навыков работы с моделирующей программой
Electronics Workbench (EWB). Изучение измерительных приборов, их схем
включения и приёмов использования.
40 руб.
Противовыбросовое оборудование
nakonechnyy_lelya@mail.ru
: 23 марта 2020
Презентация-Противовыбросовое оборудование-Книги-Презентация-Литература-Нефтегазовая промышленность-Руководство по эксплуатации-Паспорт-Каталог-Инструкция-Формуляр-Чертежи-Техническая документация-Курсовая работа-Дипломный проект-Специальность-Буровое оборудование-Нефтегазопромысловое оборудование-Транспорт и хранение нефти и газа-Нефтегазопереработка-Нефть и газ-Добыча полезных ископаемых-Геологоразведка-Машины и оборудование нефтяных и газовых промыслов-Технологические машины и оборудование-Бу
312 руб.