Контрольная работа по дисциплине: "Математический анализ (2 семестр)". Вариант №3
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Вариант 03, Данная работа неперекупленна, на данный момент сдавал ее только я.
1.Даны функция , точка и вектор .Найти: 1) в точке А. 2) Производную в точке А по направлению вектора а.
2.Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (а>0).
3.Вычислить с помощью тройного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
4.Даны векторное поле F=Xi+Yj+Zk и плоскость (р) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s – основание пирамиды, принадлежащие плоскости (Р); 1-контур, ограничивающий s; n – нормаль к s, направленная вне пирамиды V.
Требуется вычислить:
1) Поток векторного поля F через поверхность s в направлении нормали n ;
2) Циркуляцию векторного поля F по замкнутому контуру 1 непосредственно и применив теорему Стокса к контуру 1 и ограниченной им поверхности s с нормалью n;
3) Поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж
1.Даны функция , точка и вектор .Найти: 1) в точке А. 2) Производную в точке А по направлению вектора а.
2.Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (а>0).
3.Вычислить с помощью тройного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
4.Даны векторное поле F=Xi+Yj+Zk и плоскость (р) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s – основание пирамиды, принадлежащие плоскости (Р); 1-контур, ограничивающий s; n – нормаль к s, направленная вне пирамиды V.
Требуется вычислить:
1) Поток векторного поля F через поверхность s в направлении нормали n ;
2) Циркуляцию векторного поля F по замкнутому контуру 1 непосредственно и применив теорему Стокса к контуру 1 и ограниченной им поверхности s с нормалью n;
3) Поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Математический анализ (2 сем.)
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 03.02.2013
Рецензия:существенных замечаний нет. Ваша работа зачтена.
Агульник Ольга Николаевна
Оценена Ваша работа по предмету: Математический анализ (2 сем.)
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 03.02.2013
Рецензия:существенных замечаний нет. Ваша работа зачтена.
Агульник Ольга Николаевна
Похожие материалы
Контрольная работа по дисциплине: Математический анализ. Вариант №3 (2-й семестр)
xtrail
: 10 февраля 2014
Вариант №3
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=ln (5x^(2)+3y^(2)); A (1;1), a (3;2)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
(x^(2)+y^(2))^(3)=a^(2)x^(2)(4x^(2)+3y^(2))
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями. z=0, z=4-x-y, x^(
600 руб.
Контрольная работа по дисциплине: Математический анализ, 2 семестр, вариант 2
Pomor
: 1 ноября 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти:
1) grad z в точке А.
2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
6. Вычислить опреде
120 руб.
Контрольная работа по дисциплине: Математический анализ Вариант: №1 2 семестр
andreizaicev
: 11 октября 2011
1. Даны функция , точка и вектор .
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах .
3.Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость степенного ряда.
5. Найти интервал сходимости степенного ряда.
6. Вычислить определенный интеграл с точностью до 0,001, разложив подынтегральную функцию в степенной ряд и затем проинтегрироват
150 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №3
xtrail
: 31 января 2014
Задача 1. Найти пределы функций (см. скрин):
Задача 2. Найти значение производных данных функций в точке x=0 (см. скрин):
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций. (см. скрин)
Задача 4. Найти неопределенные интегралы (см. скрин):
Задача 5. Вычислить площади областей, заключённых между линиями:
y=4-x2; y=4x-1.
420 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №3
migsvet
: 7 апреля 2012
Вариант №3
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными пло
100 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №3
sergeyw78
: 4 марта 2012
Вариант №3
1. Исследовать сходимость числового ряда.
2. Найти интервал сходимости степенного ряда
3. Вычислить определенный интеграл с точностью до 0.001, разложив подынтегральную функцию в степенной ряд и затем проинтегрировать его почленно.
4. Разложить данную функцию f(x) в ряд Фурье в
5. Найти общее решение дифференциального уравнения.
6. Найти частное решение дифференциального уравнения , удовлетворяющее начальным условиям
75 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант:3
vovanik
: 16 февраля 2012
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить график функции.
Задача 4. Найти неопределенные интегралы
Задача 5. Вычислить площади областей, заключённых между линиями y=4-x2; y=4x-1.
100 руб.
Контрольная работа по дисциплине «Математический анализ» Вариант № 3
mdf92
: 27 января 2010
Контрольная работа
по дисциплине
«Математический анализ» Вариант 3.2.
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.