Контрольная работа по математическому анализу. 2-й семестр. Вариант №10
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача No 1: Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
Задача No 2: Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
Задача No 3: Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
Задача No 4: Даны векторное поле F=Xi+Yj+Zk, l — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащее плоскости (P); n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского.
Сделать чертеж.
Сделать чертеж.
Задача No 2: Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
Задача No 3: Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
Задача No 4: Даны векторное поле F=Xi+Yj+Zk, l — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащее плоскости (P); n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского.
Сделать чертеж.
Сделать чертеж.
Дополнительная информация
2014, Сибирский государственный университет телекоммуникаций и информатики, Агульник О.Н., зачтено
Похожие материалы
Контрольная работа по математическому анализу. 2-й семестр
vacaba
: 20 февраля 2014
1) Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2) Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2)
50 руб.
Контрольная работа по математическому анализу. 2-й семестр. Вариант №6
chita261
: 8 января 2015
Контрольная работа
1. Даны функции z=z(x, y), точка A (x0, y0). Найти: 1) grad z в точках А. 2) производную в точке А по направлению вектора а.
z=arctg(xy^2 ); A(2,3), a(4,-3)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (а˃0)
x^6=a^2 (x^4-y^4 )
3. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
z=0,4z=y^2,2x-y=0,x+y=9
. 4. Даны векторное поле
100 руб.
Контрольная работа по математическому анализу. 1-й вариант. 1-й семестр
oksana
: 11 марта 2015
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
59 руб.
Контрольная работа по математическому анализу. 2-й семестр. 3-й вариант
fillin
: 25 апреля 2013
Задача 1. Найти пределы функций:
3.3. а) ; б) ; в)
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
5.3.
Задача 4. Найти неопределенные интегралы
6.3. а) ;
Задача 5. Вычислить площади областей, заключённых между линиями:
7.3. y=4-x2; y=4x-1.
70 руб.
Контрольная работа. Математический анализ (2-й семестр).
s-kim
: 9 февраля 2013
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay).
Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда.
6. Вычислить определенный
100 руб.
Контрольная работа. Математический анализ. 1-й семестр
mikkikikki
: 8 мая 2012
Задача 1. Найти пределы функций.
Задача 2. Найти значение производных данных функций в точке .
y=(x2+1)sin3x.
Задача 3. Провести исследование функций с указанием а) области определения и точек разрыва; б) экстремумов; в) асимптот. По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы.
Задача 5. Вычислить площади областей, заключенных между линиями.
y = 3x-1; y = x2 - 2x + 5.
100 руб.
Контрольная работа №1 "Математический анализ". 1-й семестр. 4-й вариант
olcherva
: 2 апреля 2013
1. Найти пределы функций.
2. Найти значение производных данных функций в точке х=0
3. Провести исследование функций с указанием
а) области определения и точек разрыва; b) экстремумов;
c) асимптот, и построить графики функций
4. Найти неопределённые интегралы:
5. Вычислить площади областей, заключённых между линиями:
100 руб.
Контрольная работа. Основы математического анализа. 4-й вариант. 2-й семестр
rukand
: 22 марта 2013
Вариант №4
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Исследовать сходимость числового ряда.
5. Найти интервал сходимости степенного ряда
6. Вычислить оп
120 руб.
Другие работы
Конверсия производства на примере АО "Казахтелеком"
evelin
: 30 октября 2013
Процесс обучения специалиста является сложным и многогранным процессом. Обретение теоретических знаний в области специализации усложняется специфическими факторами обучающегося. Теоретические знания требуют закрепления на практике, который является частью процесса обучения.
Без практического опыта специалист будет являться «сырым», не подготовленным к профессиональным факторам воздействия, так как будет чувствовать себя не уверенным, на что после потребуется больше времени. Только систематическ
5 руб.
Організація надання міжнародних експедиторських послуг
OstVER
: 10 сентября 2013
План
1. Організація надання міжнародних експедиторських послуг
2. Етапи укладання міжнародних контрактів
Список використаної літератури
1. Організація надання міжнародних експедиторських послуг
Зовнішньоекономічна діяльність загалом і зовнішньоторговельна зокрема тісно пов'язані з транспортними операціями. Транспортні операції починають і завершують процес реалізації зовнішньоторговельної угоди і тим самим не тільки обумовлюють практичну реалізацію договору купівлі-продажу, але і помітно
5 руб.
Лабораторные работы №1, №2, №3, №4, №5 по информатике. 2 семестр. Вариант 4
Jurgen
: 6 сентября 2011
Лабораторная работа №1
Программирование разветвляющихся процессов
Лабораторная работа №2
Программирование простых циклических процессов
Лабораторная работа №3
Программирование типовых алгоритмов
Лабораторная работа №4
Обработка одномерных массивов
Лабораторная работа №5
Обработка двумерных массивов
200 руб.
Теплотехника Задача 2.85
Z24
: 1 февраля 2026
Какова плотность кислорода при 0 ºС и давлении 600 мм рт.ст., если при 760 мм рт.ст. и 15 ºС она равна 1,310 кг/м³ ?
150 руб.