Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1 (2-й семестр)
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=x^2+xy+y^2; A(1;1), a(2;-1)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
(x^2+y^2)^3=a^2x^2y^2
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0, z=x, y=0, y=4, x=корень(25-y^2)
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
z=x^2+xy+y^2; A(1;1), a(2;-1)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
(x^2+y^2)^3=a^2x^2y^2
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0, z=x, y=0, y=4, x=корень(25-y^2)
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Дополнительная информация
Оценка - отлично!
Преподаватель: Агульник В.И.
Преподаватель: Агульник В.И.
Похожие материалы
Контрольная работа № 2 по дисциплине: Математический анализ. Вариант №1. 2-й семестр
Nicola90
: 10 марта 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3.Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями обра
90 руб.
Контрольная работа № 2 по дисциплине: Математический анализ. Вариант: № 6. 1-й семестр
студент-сибгути
: 24 февраля 2013
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
7.6. y=0,25x2; y=2-0,5x.
29 руб.
Контрольная работа №2 по дисциплине: Математический анализ. 2-й семестр. Вариант № 9
58197
: 30 сентября 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями об
60 руб.
Математический анализ. 1-й семестр, вариант №1.
Alexandr1305
: 26 февраля 2019
Вариант No 1
1 Найти пределы
а) б) в) .
2 Найти производные данных функций
а) б)
в) г) .
3 Исследовать методами дифференциального исчисления функцию . Используя результаты исследования, построить её график.
4 Дана функция . Найти все её частные производные второго порядка.
5 Найти неопределенные интегралы
а) б)
в) г) .
60 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1
konst1992
: 27 января 2018
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, ко
130 руб.
Контрольная работа №2 по дисциплине: Математический анализ. вариант №1
konst1992
: 27 января 2018
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
150 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1
xtrail
: 2 апреля 2013
Вариант № 1
Задания:
1. Вычертить область плоскости по данным условиям (см.скрин)
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них. (см.скрин)
3. При помощи вычетов вычислить данный интеграл по контуру. (см.скрин)
300 руб.
Контрольная работа № 2 по дисциплине: «Математический анализ». Вариант: №1
Игуана
: 22 марта 2012
Вычертить область плоскости по данным условиям:
Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
При помощи вычетов вычислить данный интеграл по контуру.
Все с чертежами.
135 руб.
Другие работы
Чертеж колонны асорбиционной
larisa70
: 6 февраля 2013
Чертеж колонны абсорбционной диаметром 2400. чертеж общего вида. В Компасе.
Лабораторные работы № (1,2). Радиоматериалы и радиокомпоненты
c-stud
: 20 февраля 2014
Лабораторная работа No1
1. Цель работы: изучить устройство куметра и методику измерений емкости и добротности.
2. Методика измерений: на функциональном генераторе устанавливаем исходную частоту и рабочее напряжение. По показаниям мультиметра добиваемся резонанса с отключенным и подключенным исследуемым конденсатором изменяя емкость переменных конденсаторов А и В.
3. Расчетные формулы: Применяемые формулы: ; ;
;
4. Результаты: экспериментальные замеры двенадцати точек на каждый график.
Лаб
350 руб.
Дискретная математика. Контрольная работа №1 - Вариант № 11
zexor
: 25 февраля 2013
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна.
а) (AÈ B) \ (AÇ B) = (A\B) È (B\A) б) U2 \ (A ́ B) = (` A ́ U) È (U ́ ` B).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 Í A ́ B, P2 Í B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью,
100 руб.
Философия. Экзамен. Билет 3
CrashOv
: 16 февраля 2020
Билет 3
1. Мировоззрение. Понятие. Структура, уровни и типы. Проблема формирования мировоззрения.
2. Задача по дисциплине " Философия"
№ билета Раздел (глава) Номер задачи
3 2(5) 22
Тексты задач в разделе "Контрольные задания".
50 руб.