ЛИНЕЙНАЯ АЛГЕБРА . Контрольная работа №1. Вариант № 2
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
Если: А1 ( 1; 8; 2), А2 ( 5; 2; 6), А3 ( 0; -1; -2), А4 (-2; 3; -1).
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
Если: А1 ( 1; 8; 2), А2 ( 5; 2; 6), А3 ( 0; -1; -2), А4 (-2; 3; -1).
Похожие материалы
ЛИНЕЙНАЯ АЛГЕБРА. Контрольная работа №1. Вариант №2
ДО Сибгути
: 8 февраля 2014
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
Если: А1 ( 1; 8; 2), А2 ( 5; 2; 6), А3 ( 0; -1; -2), А4 (-2; 3; -1).
30 руб.
Контрольная работа №1 (Линейная алгебра) В-4
banderas0876
: 6 мая 2015
Вариант №1.4
Задача 1
Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Решение методом Крамера.
Перепишем систему линейных алгебраических уравнений в матричную форму
Найдем определитель основной матрицы:
Определитель основной матрицы не равен нуля, значит система невырожденная.
Найдем определители 3 дополнительных матриц:
Дополнительная матрица получается из основной путем зам
100 руб.
Контрольная работа №1. Линейная алгебра. Вариант №1
7059520
: 13 марта 2015
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
50 руб.
Линейная алгебра. Контрольная работа №1, Вариант №9
Mixhot
: 13 декабря 2015
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1.длину ребра А1А2;
2.угол между ребрами А1А2 и А1А4;
3.площадь грани А1А2А3;
4.уравнение плоскости А1А2А3.
5.объём пирамиды А1А2А3А4.
2.9. А1 ( 1; 8; 2), А2 ( 5; 2; 6), А3 ( 5; 7; 4), А4 ( 4; 10; 9).
150 руб.
Линейная Алгебра, Контрольная работа №1. Вариант 04.
валли19
: 26 января 2015
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса. 1.4
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
длину ребра А1А2;
угол между ребрами А1А2 и А1А4;
площадь грани А1А2А3;
уравнение плоскости А1А2А3.
объём пирамиды А1А2А3А4. 2.4
50 руб.
Контрольная работа №1. Линейная алгебра. Вариант 02
Nastya2000
: 29 декабря 2015
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4. Найти:
1. длину ребра А1А2;
2. угол между ребрами А1А2 и А1А4;
3. площадь грани А1А2А3;
4. уравнение плоскости А1А2А3.
5. объём пирамиды А1А2А3А4.
А1 ( 1; 8; 2), А2 ( 5; 2; 6), А3 ( 0; -1; -2), А4 (-2; 3; -1).
100 руб.
Контрольная работа №1. Линейная алгебра, Вариант № 3
Татьяна33
: 10 февраля 2013
Задача №1. Дана система трех линейных уравнений. Найти ее решение двумя способами: методом Крамера и методом Гаусса.
Задача №2. Даны координаты вершин пирамиды А1 А2 А3А4. Найти
1. длину ребра А1 А2;
2. угол между ребрами А1 А2 и А1А4;
3. площадь грани А1 А2 А3;
4. уравнение плоскости А1 А2 А3;
5. объем пирамиды А1 А2 А3А4.
50 руб.
Линейная алгебра. Контрольная работа №1. Вариант №3
Sevial
: 27 апреля 2012
Задача 1. Дана система трех линейных уравнений. Найти решение ее двумя способами: методом Крамера и методом Гаусса.
Задача 2. Даны координаты вершин пирамиды А1А2А3А4.
Найти:
длину ребра А1А2;
угол между ребрами А1А2 и А1А4;
площадь грани А1А2А3;
уравнение плоскости А1А2А3.
объём пирамиды А1А2А3А4.
120 руб.
Другие работы
Гидравлика Севмашвтуз 2016 Задача 6 Вариант 6
Z24
: 26 октября 2025
Определить силу давления на коническую крышку горизонтального цилиндрического сосуда диаметром D, заполненного жидкостью Ж (рис.1). Показание манометра в точке его присоединения — рм. Показать на чертеже вертикальную и горизонтальную составляющие, а также полную силу давления.
180 руб.
Институт правопреемства в органах государственной власти: особенности правового регулирования
evelin
: 15 марта 2014
Введение
1 История формирования конституционного права в РФ
1.1 Конституция 1918
1.2 Конституция 1924
1.3 Конституция 1937
1.4 Конституция 1978
1.5 Конституция 1993
2 Этапы формирования современной государственной власти
3 Институт правопреемства РФ в отношении СССР и РСФСР
3.1 История правопреемства советских органов госбезопасности
3.2 ВЧК (1917—1922)
3.3 ГПУ при НКВД РСФСР (1922—1923)
3.4 ОГПУ (1923—1934)
3.5 НКВД — НКГБ (1934—1943)
3.6 НКГБ — МГБ (1943—1954)
3.7 КГБ СССР (1954—1991)
3.8 Созд
15 руб.
Финансовые стратегии.фэ_БАК Правильные ответы на тест Синергия МОИ МТИ МосАП
alehaivanov
: 21 августа 2025
Результат 100 баллов из 100
Финансовые стратегии.фэ_БАК
1. Занятие
Выберите один правильный ответ: Главная цель дивидендной политики – это …
Тип ответа: Одиночный выбор • с выбором одного правильного ответа из нескольких предложенных вариантов
• сокращение дивидендных выплат с целью наращивания объема собственного капитала компании для обеспечения максимально высоких темпов ее роста
• выплата максимально высоких дивидендов для реализации финансовых интересов акционеров компании, стремящихся к п
145 руб.
Бруй Л.П. Техническая термодинамика ТОГУ Задача 5 Вариант 31
Z24
: 13 января 2026
Определение технико-экономических показателей теоретического цикла Ренкина
Паротурбинная установка работает по теоретическому циклу Ренкина. Давление и температура водяного пара на выходе из парогенератора (перед турбиной): p1 и t1; давление пара после турбины (в конденсаторе) p2.
Определить термический коэффициент полезного действия цикла ηt и теоретический удельный расход пара d, кг/(кВт·ч) при следующих условиях работы установки:
I — p1, t1 и p2 — (все параметры взять из табл. 6);
250 руб.