Дискретная математика (2-й семестр). Лабораторная работа №3. Без варианта
Состав работы
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задание. Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕСТАНОВОК! – сгенерировать последовательно возрастающие (лексикографически) наборы, вплоть до последнего, в котором все элементы упорядочены по убыванию.
Следует оценивать количество возможных перестановок и в случае, если они не поместятся на экран, выполнять их вывод в файл с выдачей на экран соответствующей информации для пользователя и выполнять поэкранный вывод с ожиданием нажатия клавиши.
Дополнительно: Предоставить пользователю возможность выбора другого варианта работы программы, в котором за исходную точку упорядочивания наборов выбирается не минимальный набор, а набор в таком порядке, как он задан пользователем.
Возможный алгоритм решения (Пример: множество А={1, 2, 3, 4, 5, 6}, |A| = n):
Предположим, что уже построено m наборов. Тогда для получения m+1-го набора:
1. Выполняется проверка последнего (m-го) набора на наличие в его конце некоторого количества символов, упорядоченных по убыванию – пусть это символы ak+1...an.
3 5 2 6 4 1≥ – k=3, символы с 4-го по 6-й упорядочены по убыванию.
2. Если такое k найдено, то поменять местами k-й элемент и наименьший элемент из ak+1...an, больший этого ak.
В нашем примере это 2 и 4: 3 5 4 6 2 1≥ (это промежуточный набор).
3. После шага 2 упорядочить элементы с k+1-го до последнего по возрастанию. Получен очередной набор выдать его на печать.
3 5 4 1 2 6≥.
4. Если на шаге 1 ответ отрицательный, то поменять местами 2 последних элемента и выдать на печать полученный набор. В частности, после шага 3 это неизбежное действие, т.к. все последние элементы были размещены по возрастанию целесообразно после выполнения ш.3 задавать признак его выполнения, который будет анализироваться (и сбрасываться) на шаге 1. После шага 3 было 3 5 4 1 2 6≥ выдать 3 5 4 1 6 2≥ .
Если был набор 3 5 2 6 1 4≥ выдать 3 5 2 6 4 1≥ .
5. Если полученный набор не последний (упорядоченный по убыванию), то возврат на шаг 1. В противном случае конец работы.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕСТАНОВОК! – сгенерировать последовательно возрастающие (лексикографически) наборы, вплоть до последнего, в котором все элементы упорядочены по убыванию.
Следует оценивать количество возможных перестановок и в случае, если они не поместятся на экран, выполнять их вывод в файл с выдачей на экран соответствующей информации для пользователя и выполнять поэкранный вывод с ожиданием нажатия клавиши.
Дополнительно: Предоставить пользователю возможность выбора другого варианта работы программы, в котором за исходную точку упорядочивания наборов выбирается не минимальный набор, а набор в таком порядке, как он задан пользователем.
Возможный алгоритм решения (Пример: множество А={1, 2, 3, 4, 5, 6}, |A| = n):
Предположим, что уже построено m наборов. Тогда для получения m+1-го набора:
1. Выполняется проверка последнего (m-го) набора на наличие в его конце некоторого количества символов, упорядоченных по убыванию – пусть это символы ak+1...an.
3 5 2 6 4 1≥ – k=3, символы с 4-го по 6-й упорядочены по убыванию.
2. Если такое k найдено, то поменять местами k-й элемент и наименьший элемент из ak+1...an, больший этого ak.
В нашем примере это 2 и 4: 3 5 4 6 2 1≥ (это промежуточный набор).
3. После шага 2 упорядочить элементы с k+1-го до последнего по возрастанию. Получен очередной набор выдать его на печать.
3 5 4 1 2 6≥.
4. Если на шаге 1 ответ отрицательный, то поменять местами 2 последних элемента и выдать на печать полученный набор. В частности, после шага 3 это неизбежное действие, т.к. все последние элементы были размещены по возрастанию целесообразно после выполнения ш.3 задавать признак его выполнения, который будет анализироваться (и сбрасываться) на шаге 1. После шага 3 было 3 5 4 1 2 6≥ выдать 3 5 4 1 6 2≥ .
Если был набор 3 5 2 6 1 4≥ выдать 3 5 2 6 4 1≥ .
5. Если полученный набор не последний (упорядоченный по убыванию), то возврат на шаг 1. В противном случае конец работы.
Похожие материалы
Лабораторная работа №3 по дисциплине: Дискретная математика. Вариант №2 (2-й семестр)
Amor
: 3 июня 2014
Задание
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке. Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬНО ВОЗМОЖНЫХ ПЕРЕСТАНОВОК! – сгенерировать последовательно возрастающие (
350 руб.
Лабораторная работа №3 по дисциплине: Дискретная математика. Генерация перестановок (2-й семестр)
xtrail
: 9 февраля 2014
Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к за-данию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использо-вать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством МИНИМАЛЬН
300 руб.
Дискретная математика. Лабораторная работа №3. Все варианты
tpogih
: 15 января 2014
Лабораторная работа No 3 Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), зате
30 руб.
Дискретная математика. Лабораторная работа № 3
svladislav987
: 16 апреля 2021
Лабораторная работа № 3 Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю должна быть пред
200 руб.
Дискретная математика. Лабораторная работа №3
Bodibilder
: 14 марта 2019
Лабораторная работа No 3 Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), зате
15 руб.
Дискретная математика. Лабораторная работа №3
sibguter
: 5 июня 2018
Тема: Генерация подмножеств
Задание
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредство
49 руб.
Дискретная математика. Лабораторная работа № 3
alexxxxxxxela
: 5 января 2014
Лабораторная работа № 3
Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем
70 руб.
Лабораторная работа №3 по дискретной математике
puzirki
: 25 декабря 2013
Работа No 3 Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный – набор), затем – посредством
300 руб.
Другие работы
Информационный менеджмент-новое направление в управлении образовательными системами
Slolka
: 5 апреля 2014
ГЛАВА 1
ИНФОРМАЦИОННЫЙ МЕНЕДЖМЕНТ- КАК ПРОЦЕСС
УПРАВЛЕНИЯ ЛЮДЬМИ, ОБЛАДАЮЩИМИ ИНФОРМАЦИЕЙ
ПРЕДМЕТ ИНФОРМАЦИОННОГО МЕНЕДЖМЕНТА
МЕТОДЫ ИНФОРМАЦИОННОГО МЕНЕДЖМЕНТА
ГЛАВА 2
ИНФОРМАЦИОННЫЙ МЕНЕДЖМЕНТ КАК ПРОЦЕСС
2.1 ЭТАПЫ ИНФОРМАЦИОННОГО МЕНЕДЖМЕНТА
2.2 УРОВНИ ОБЕСПЕЧЕНИЯ ИНФОРМАЦИОННОГО МЕНЕДЖМЕНТА
ГЛАВА 3
ИСПОЛЬЗОВАНИЕ ФУНКЦИЙ И МЕТОДОВ ИНФОРМАЦИОННОГО МЕНЕДЖМЕНТА В ПРАКТИКЕ УПРАВЛЕНИЯ ОРГАНИЗАЦИЕЙ
3.1
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
ВВЕДЕНИЕ
Выполнение данной работы ориентировано на
5 руб.
Контрольная работа №2 по физике. Вариант №3. Семестр 1. ЗО.
grigorev1976
: 16 сентября 2014
363. От батареи, ЭДС которой E=600в, требуется передать энергию на расстояние l=1км...
373. Сила тока в проводнике сопротивлением R= 10 Ом за время t = 50с равномерно
нарастает от I = 5A до I = 10A. Определить количество теплоты Q, выделившееся
за это время в проводнике.
403. По двум скрещенным под прямым углом бесконечно длинным проводам текут токи
I и 2I (I= 100A). Определить магнитную индукцию В в точке А. Расстояние d = 10cм.
413. Квадратная проволочная рамка расположена в одной плоскости
120 руб.
Контрольная работа по дисциплине: Схемотехника телекоммуникационных устройств. Вариант №5
hellofromalexey
: 19 февраля 2021
Необходимо выбрать тип усилительных элементов и режим работы, рассчитать принципиальную схему. Принципиальная схема группового усилителя приведена на рисунке 1.
Исходные данные приведены в таблице 1.
Таблица 1 – Показатели усилителя
Выбор варианта (по предпоследней цифре пароля)
Номер варианта 0
Количество каналов, тч 198
Максимальная температура грунта 36
Уровень передачи УП, дБ 14,9
Требуемое затухание нелинейности АГ0 2, дБ 75
АГ0 3, дБ 77
Выбор варианта (по последней цифре пароля)
Н
450 руб.
Контрольная работа по дисциплине: Компьютерное моделирование. Вариант 10
Учеба "Под ключ"
: 13 июня 2022
Задание на контрольную работу
Заданы модели систем связи с:
- битовой скоростью передачи Rb, Мбит/с;
- модуляцией 4 PSK, 16-QAM;
- фильтром с коэффициентом сглаживания ROF;
- каналом с шумом AWGN с отношением Eb/N0, dB.
Варианты задания (по двум последним цифрам пароля)
№ варианта: 10
Скорость Rb, Мбит/с: 1.7
Модуляция: 16-QAM; 4PSK
ROF: 1.0; 0.3
1. Изучить структурные схемы моделей, пояснить назначение элементов схемы. Ознакомится с основными сведениями по работе с моделью.
2. Пронаблюдать
1400 руб.