Лабораторные работы №№1-5 по дисциплине: Вычислительная математика. Вариант №7
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Лабораторная работа №1. Интерполяция
Известно, что функция f(x) удовлетворяет условию |f(x)\'\'|<=2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблице значений функции с шагом h.
3. Выводит значения xi, приближенные и точные значения функции в точках xi (i = 0,1,...29).
Для построения таблицы взять функцию. N – последняя цифра пароля, i mod 4 – остаток от деления i на 4 (Например, 10 mod 4 = 2, 15 mod 4 = 3, 8 mod 4 = 0).
N=7
Лабораторная работа №2. Решение систем линейных уравнений.
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если (k – номер итерации, k = 0,1,...). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
N – последняя цифра пароля.
N=7
Лабораторная работа № 3
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие ,(e – заданная точность), при этом Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля.
Вариант № 7
x^(3)-3x^(2)-24x-5=0
Лабораторная работа № 4
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: .
Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения в точках .
3. Выводит значения xi (i = 0,1… 20)., приближенные и точные значения в точках xi.
Для построения таблицы взять функцию , где N – последняя цифра пароля =7. . Тогда, точное значение производной .
Лабораторная работа № 5
Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2,… ), при этом, ,
N – последняя цифра пароля = 7.
Известно, что функция f(x) удовлетворяет условию |f(x)\'\'|<=2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблице значений функции с шагом h.
3. Выводит значения xi, приближенные и точные значения функции в точках xi (i = 0,1,...29).
Для построения таблицы взять функцию. N – последняя цифра пароля, i mod 4 – остаток от деления i на 4 (Например, 10 mod 4 = 2, 15 mod 4 = 3, 8 mod 4 = 0).
N=7
Лабораторная работа №2. Решение систем линейных уравнений.
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количество итераций для решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной.
Написать программу решения системы линейных уравнений методом простой итерации с точностью до 0.0001 для каждой переменной. Точность достигнута, если (k – номер итерации, k = 0,1,...). Вывести количество итераций, понадобившееся для достижения заданной точности, и приближенное решение системы.
N – последняя цифра пароля.
N=7
Лабораторная работа № 3
Найти аналитически интервалы изоляции действительных корней уравнения. Написать программу нахождения всех действительных корней нелинейного уравнения методом деления пополам с точностью 0,0001. Считается, что требуемая точность достигнута, если выполняется условие ,(e – заданная точность), при этом Корни отделить аналитически, для чего найти производную левой части уравнения и составить таблицу знаков левой части на всей числовой оси. Вариант выбирается по последней цифре пароля.
Вариант № 7
x^(3)-3x^(2)-24x-5=0
Лабораторная работа № 4
Известно, что функция удовлетворяет условию при любом x. Измерительный прибор позволяет находить значения с точностью 0.0001. Найти наименьшую погрешность, с которой можно найти по приближенной формуле: .
Рассчитать шаг для построения таблицы значений функции, которая позволит вычислить значения с наименьшей погрешностью.
Составить программу, которая
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале [c – h, c + 21h].
2. По составленной таблице вычисляет значения в точках .
3. Выводит значения xi (i = 0,1… 20)., приближенные и точные значения в точках xi.
Для построения таблицы взять функцию , где N – последняя цифра пароля =7. . Тогда, точное значение производной .
Лабораторная работа № 5
Написать программу для нахождения максимального значения функции на отрезке [0, 0.5] методом золотого сечения с точностью 0.0001. Считается, что требуемая точность достигнута, если выполняется условие , (e – заданная точность, ak, bk – границы интервала неопределенности, k = 0,1,2,… ), при этом, ,
N – последняя цифра пароля = 7.
Дополнительная информация
Все работы успешно зачтены!
В архиве отчеты + программа к каждой работе.
В архиве отчеты + программа к каждой работе.
Похожие материалы
Лабораторные работы №№1-5 по дисциплине: Вычислительная математика. Вариант №7.
ДО Сибгути
: 4 февраля 2016
Лабораторная работа №1. Интерполяция
Известно, что функция f(x) удовлетворяет условию |f(x)\\\'\\\'|<=2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции выч
200 руб.
Лабораторные работы №№1-5 по дисциплине вычислительная математика
Юлия102
: 1 марта 2017
Вариант 1.
Лабораторная работа №1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой.
Лабораторная работа №2.Решение систем линейных уравнений.
Привести систему к виду, подходящему для метода простой итерации. Рассчитать аналитически количес
300 руб.
Лабораторные работы №№1-5 По дисциплине: Вычислительная математика
nmaksim91
: 9 февраля 2015
Лабораторная работа No1. Интерполяция.
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения фун
390 руб.
Вычислительная математика. Лабораторная работа №1. Вариант №7
Znich
: 7 апреля 2016
Известно, что функция f(x) удовлетворяет условию |f'' (x)|≤2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая:
1. Выводит таблицу значений функции с рассчитанным шагом h на интервале
2. С помощью линейной интерполяции вычисляет значения функции в точках
3. Выводит зн
90 руб.
Вычислительная математика, Лабораторные работы 1-3, вариант 7
Dmitry17
: 18 июня 2022
Вариант 7
Лабораторная работа 1 - Линейная интерполяция
Лабораторная работа 2 - Приближенное решение систем линейных уравнений
Лабораторная работа 3 - Численное дифференцирование
!!Важно: перед покупкой проверяйте соответствие заданий на скриншотах у лота с теми, что выдал преподаватель.
Язык реализации программ: Dart.
В архиве:
- исходный код программ с комментариями
- инструкция по запуску
- отчёты
500 руб.
Вычислительная математика. Лабораторные работы №№1-3. Вариант №7
Damovoy
: 27 октября 2020
Лабораторная работа 1
Линейная интерполяция
Задание на лабораторную работу
1. Рассчитать h – шаг таблицы функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после точки.
2. Написать программу, которая
а) выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+15h] (таблица должна содержать 2 столбца: значения аргумента и соответствующее ему округ
190 руб.
Лабораторная работа №1. Вычислительная математика. Вариант №7. ДО СибГУТИ.
Olya
: 9 января 2018
Задание:
Известно, что функция удовлетворяет условию при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет значения функции в точках по таблице знач
200 руб.
Лабораторная работа №1 по дисциплине: Вычислительная математика. Вариант №7
Jack
: 28 ноября 2014
Лабораторная работа №1. Интерполяция
Известно, что функция f(x) удовлетворяет условию |f(x)''|<=2c при любом x. Рассчитать шаг таблицы значений функции f(x), по которой с помощью линейной интерполяции можно было бы найти промежуточные значения функции с точностью 0.0001, если табличные значения функции округлены до 4-х знаков после запятой. Составить программу, которая
1.Выводит таблицу значений функции с рассчитанным шагом h на интервале [c, c+30h].
2. С помощью линейной интерполяции вычисляет
250 руб.
Другие работы
Экзаменационная работа по дисциплине: «Радиопередающие устройства систем радиосвязи и радиодоступа» Тест №14
Помощь студентам СибГУТИ ДО
: 21 сентября 2015
Экзамен по курсу «Радиопередающие устройства»
Тест No14
1. Для увеличения к.п.д. генератора необходимо:
- увеличить угол отсечки;
- уменьшить угол отсечки;
- увеличить коэффициент усиления;
- снизить напряженность режима.
2. Мощность двух идентичных генераторов складывается с помощью мостовой схемы, отдавая в нагрузку 100 Вт. Балластное сопротивление моста должно быть рассчитано на мощность (ватт): (50; 25; 12,5; 0).
3. К.п.д.
350 руб.
ГОСТ 25347 - 82 Поля допусков валов и отверстий при номинальных размерах От 1 до 500 мм. Предельные отклонения
GnobYTEL
: 2 июля 2013
Стандарт устанавливает предельные отклонения полей допусков валов и отверстий при номинальных размерах От 1 до 500 мм
5 руб.
Расчет элементов автомобильных гидросистем МАМИ Задача 4.7 Вариант Ж
Z24
: 19 декабря 2025
Жидкость (масло) движется с расходом Q по трубе, которая в точке К разветвляется на два трубопровода 1 и 2, а затем в точке М эти трубопроводы соединяются вновь. Определить расходы Q1 и Q2 в трубопроводах 1 и 2, а также перепад давлений между точками К и М – ΔрК-М. Длины l1, l2, и диаметры d1, d2 трубопроводов заданы. При решении местными потерями пренебречь. Принять плотность ρ = 900 кг/м³, вязкость ν = 0,5 см²/с, режим течения ламинарным. (Величины Q, l1, l2, d1 и d2 взять из таблицы 4).
150 руб.
Модель трехмерной сцены и библиотека OpenGL
Slolka
: 7 октября 2013
Формулировка задачи
Средствами графической библиотеки OpenGL построить динамическую трехмерную сцену, включающую заданные тело и поверхность вида z=f(x,y). Заданные графические объекты должны быть представлены в следующих видах:
· в виде каркасной модели, позволяющей видеть контуры примитивов, из которых составлены объекты;
· в виде реалистических изображений, построенных с учетом параметров источника освещения и параметров отражающих свойств материала;
· в виде объектов с наложенной на н
10 руб.