Теория вероятностей, математическая статистика и случайные процессы. Контрольная работа. Вариант 8. СибГУТИ
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача № 1.
Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове? При p=0,6 k=3
Задача № 2.
В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
При K=4 L=6 M=5 N=6 P=3 R=3
Задача № 3.
В типографии имеется K печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна P. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше R. При K=4 P=0,9 R=2
Задача № 4.
Непрерывная случайная величина задана ее функцией распределения (см.скриншот).
Найти параметр С, плотность распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал [a , b ] и квантиль порядка p. При a=1; b=10; F(x)=c(x-1); альфа=2; бета=5; p=0,85
Задача № 5.
Продолжительность телефонного разговора распределена по показательному закону с параметром l (1/мин.). Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%? При л=0,35
Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове? При p=0,6 k=3
Задача № 2.
В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
При K=4 L=6 M=5 N=6 P=3 R=3
Задача № 3.
В типографии имеется K печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна P. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше R. При K=4 P=0,9 R=2
Задача № 4.
Непрерывная случайная величина задана ее функцией распределения (см.скриншот).
Найти параметр С, плотность распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал [a , b ] и квантиль порядка p. При a=1; b=10; F(x)=c(x-1); альфа=2; бета=5; p=0,85
Задача № 5.
Продолжительность телефонного разговора распределена по показательному закону с параметром l (1/мин.). Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%? При л=0,35
Дополнительная информация
Коментарии: Все задачи решены самостоятельно и правильно. Зачёт получен с первого раза.
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория вероятностей, математическая статистика и случайные процессы
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 18.01.2013
Рецензия:Уважаемая ++++++++++++++,
Разинкина Татьяна Эдуардовна
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория вероятностей, математическая статистика и случайные процессы
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 18.01.2013
Рецензия:Уважаемая ++++++++++++++,
Разинкина Татьяна Эдуардовна
Похожие материалы
Теория вероятностей математическая статистика и случайные процессы
Кирилл81
: 26 января 2017
Задача 1 (текст 2): вероятность появления поломок на каждой из k = 4 соединительных линий равна p = 0,1. Какова вероятность того, что хотя бы две линии исправны?
Решение:
В данном случае имеется последовательность испытаний по схеме Бернулли, т.к. испытания независимы, и вероятность успеха (соединительная линия будет исправна) р=1-0,1=0,9 одинакова во всех испытаниях. Тогда по формуле Бернулли при n=4, р=0,9, q=1-p=1-0,9=0,1
80 руб.
Теория вероятностей и математическая статистика, и случайные процессы
style2off
: 12 января 2016
Задача 1.Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове?
Задача2.В одной урне 5 белых шаров и 2 чёрных шара, а в другой – 4 белых и 4 чёрных. Из первой урны случайным образом вынимают 3 шара и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шара. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача3.В типографии имеется7печатных машин. Для каждой машины вероятность т
800 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Билет № 9
1. Тема: Независимость событий.
Задача: Монету подбросили два раза. События: А – первый раз выпал герб, В– число выпавших гербов больше числа выпавших цифр. Зависимы ли эти события?
2. Тема: Мат. ожидание непрерывной с.в.
Задача: Случайная величина задана плотностью распределения. Найти её мат. ожидание.
150 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Контрольная работа. Вариант 9,
По дисциплине: Теория вероятностей, математическая статистика и случайные процессы
Задача 1
Вероятность появления поломок на каждой из 4 соединительных линий равна 0,25. Какова вероятность того, что хотя бы две линии исправны?
200 руб.
Теория вероятностей, математическая статистика и случайные процессы
1231233
: 24 апреля 2010
Задача 1. Вероятность появления поломок на каждой из 6 соединительных линий равна 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2. В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3. В типографии имеется 5 печатных машин. Для каждой
23 руб.
Контрольная работа по дисциплине: Теория вероятностей математическая статистика и случайные процессы. Вариант № 8
Amor
: 3 ноября 2013
Задача No 1.
Вероятность соединения при телефонном вызове равна p. Какова вероятность, что соединение произойдёт только при k - ом вызове? При p=0,6 k=3
Задача No 2.
В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
При K=4 L=6 M=5 N=6 P=3 R=3
Задача
320 руб.
Контрольная работа по дисциплине: Теория вероятности, математическая статистика и случайные процессы
pepol
: 16 декабря 2014
Задача № 10.7
Два стрелка произвели по одному выстрелу по мишени. Вероятность поражения мишени каждым из стрелков равна 0,9.
Задача № 11.7
Вероятность появления события в каждом из независимых испытаний равна 0,2.
Задача № 12.7
Найти:
а) математическое ожидание;
б) дисперсию;
в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
Задача № 13.7
Заданы математическое ожидание а и среднее квадратическое отклонение s норм
50 руб.
Контрольная работа по дисциплине: Теория вероятностей, математическая статистика и случайные процессы. Вариант №7. СибГУТИ
sanrus72
: 24 мая 2014
Контрольная работа
По дисциплине: Теория вероятностей, математическая статистика и случайные процессы
1.Вероятность появления поломок на каждой из k соединительных линий равна p. Какова вероятность того, что хотя бы две линии исправны?
2.В одной урне K белых шаров и L чёрных шаров, а в другой – M белых и N чёрных. Из первой урны случайным образом вынимают P шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают R шаров. Найти вероятность того, что все шары, вынутые
90 руб.
Другие работы
Контрольная работа по дисциплине: Программное обеспечение цифровых систем коммутации
Vladilen
: 26 ноября 2011
Вариант 20
Задача 4.
Изобразить схему алгоритма приема информации о новых вызовах в СКПУ. Привести пример обработки данных в процессе приема, используя исходные данные. Записать заявки в буфер предварительных заявок (БПЗ) и буфер заявок для обработки новых вызовов (БЗО). Нумерация оконечных устройств начинается с правого нулевого разряда в нулевой группе (К=0).
Обозначения в таблице исходных данных:
• СОС1 - слово очередного сканирования один;
• СОС2 - слово очередного сканирования два;
• СПС
80 руб.
Плавка сплавов на основе меди на примере марки БрОЦ4-3
Lokard
: 4 октября 2017
Характеристика состава исходной шихты для выплавки расплава
Плавильный агрегат, применяемый для выплавки расплава
Технология плавки
Сырье для получения меди.
Подготовка медных руд к плавке.
Плавка штейна.
Конвертирование медного штейна.
Рафинирование меди.
Выплавка оловянной бронзы.
Физико-химические основы плавки расплава
Характеристика сплава БрО5С25
15 руб.
Схема выполнения изоляционных работ-Чертеж-Оборудование транспорта нефти и газа-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 14 мая 2016
Схема выполнения изоляционных работ-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование транспорта нефти и газа-Курсовая работа-Дипломная работа
400 руб.
Источники муниципального права как отрасли российского права
Алёна51
: 6 октября 2017
Введение 3
1. Источники муниципального права: понятие, признаки, функции 5
2. Система источников муниципального права 9
Заключение 20
Библиографический список 21
200 руб.