Дискретная математика. Лабораторная работа № 4. Вариант №18. СибГУТИ
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
(Разделение на варианты не предусмотрено)
Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение...
Алгоритм построения бинарного кода Грея
Вход: n 0 – мощность множества.
Выход: последовательность кодов подмножеств B (битовая шкала).
1. Инициализация массива В и его выдача на печать.
2. В цикле по i (от 1 до 2 n –1):
а) Определение элемента для добавления или удаления: p:=Q(i);
б) Добавление или удаление элемента B[p]:=1–B[p];
в) Вывод очередного подмножества – массива B.
Функция Q(i) определяется как число, на единицу превышающее количество «2» в разложении числа i на множители. Очевидно, что для нечетных i значение этой функции равно 1, т.е. для нечетного i значение будет менять крайний правый бит шкалы (нумерация справа налево от 1), а для i, равных степени 2, будет «включаться» бит, соответствующий этой степени 2 (например, для 4 – 3-й бит, для 8 – 4-й бит, ...).
Пример: Выполнение алгоритма для n=3. Дополнительно: множество {a,b,c}.
i p B Дополнительно множества
0 0 0
1 1 0 0 1 {с}
2 2 0 1 1 {b,c}
3 1 0 1 0 {b}
4 3 1 1 0 {a,b}
5 1 1 1 1 {a,b,c}
6 2 1 0 1 {a,c}
7 1 1 0 0 {a}
Дополнительно:
Предоставить пользователю возможность задать исходное множество путем перечисления его элементов. Упорядочить это множество, сопоставить ему битовую шкалу. При выводе каждой строки битовой шкалы на экран в той же строке указывать конкретное подмножество, соответствующее этой шкале.
Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата выводить построчно каждое из подмножеств (в виде битовой шкалы), сопровождая их порядковыми номерами. В случае большого количества результирующих строк (превышающего размер экрана) выполнять поэкранную выдачу, а также осуществлять их вывод в файл с выдачей на экран сообщения для пользователя – имя файла, его местонахождение...
Алгоритм построения бинарного кода Грея
Вход: n 0 – мощность множества.
Выход: последовательность кодов подмножеств B (битовая шкала).
1. Инициализация массива В и его выдача на печать.
2. В цикле по i (от 1 до 2 n –1):
а) Определение элемента для добавления или удаления: p:=Q(i);
б) Добавление или удаление элемента B[p]:=1–B[p];
в) Вывод очередного подмножества – массива B.
Функция Q(i) определяется как число, на единицу превышающее количество «2» в разложении числа i на множители. Очевидно, что для нечетных i значение этой функции равно 1, т.е. для нечетного i значение будет менять крайний правый бит шкалы (нумерация справа налево от 1), а для i, равных степени 2, будет «включаться» бит, соответствующий этой степени 2 (например, для 4 – 3-й бит, для 8 – 4-й бит, ...).
Пример: Выполнение алгоритма для n=3. Дополнительно: множество {a,b,c}.
i p B Дополнительно множества
0 0 0
1 1 0 0 1 {с}
2 2 0 1 1 {b,c}
3 1 0 1 0 {b}
4 3 1 1 0 {a,b}
5 1 1 1 1 {a,b,c}
6 2 1 0 1 {a,c}
7 1 1 0 0 {a}
Дополнительно:
Предоставить пользователю возможность задать исходное множество путем перечисления его элементов. Упорядочить это множество, сопоставить ему битовую шкалу. При выводе каждой строки битовой шкалы на экран в той же строке указывать конкретное подмножество, соответствующее этой шкале.
Дополнительная информация
Программа написана самостоятельно и не содержит багов (полностью отлаженный и работающий вариант). Описание работы содержит информацию о ходе написания программы, её тестирования и работы.
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Лабораторная работа 4
Оценка:Зачет
Дата оценки: 12.02.2013
Рецензия:Уважаемая ++++++++
Вы не учли один момент - множество следовало упорядочить.
Бах Ольга Анатольевна
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Дискретная математика
Вид работы: Лабораторная работа 4
Оценка:Зачет
Дата оценки: 12.02.2013
Рецензия:Уважаемая ++++++++
Вы не учли один момент - множество следовало упорядочить.
Бах Ольга Анатольевна
Похожие материалы
Дискретная математика. Контрольная работа. Вариант 18. СибГУТИ
Shamrock
: 2 февраля 2015
No1 Доказать равенства, используя свойства операций над множествами и определения операций. Проиллюстрировать при помощи диаграмм Эйлера-Венна. а) A\\ ((AB)\\C) = (A\\B) (A C)
б) U2 \\ (C D) = (U (U\\D)) ((U\\C) U).
No2 Даны два конечных множества: А={a,b,c}, B={1,2,3,4}; бинарные отношения P1 A B, P2 B2. Изобразить P1, P2 графически. Найти P = (P2P1)–1. Выписать области определения и области значений всех трех отношений: P1, P2, Р. Построить матрицу [P2], проверить с ее помощью, являет
250 руб.
Дискретная математика. Лабораторная работа № 3. Вариант №18. СибГУТИ
Shamrock
: 2 февраля 2015
(Разделение на варианты не предусмотрено)
Генерация перестановок
Дано конечное множество A. Требуется сгенерировать все возможные перестановки его элементов в лексикографическом порядке (по материалам главы 1, п. 1.3.6, и главы 2, п. 2.2.1). Требования к заданию множества – в нем не должно быть повторяющихся элементов, кроме того, удобнее использовать или только буквы, или только цифры.
Программа должна сначала упорядочить все элементы заданного множества по возрастанию (это первый – минимальный
220 руб.
Дискретная математика. Лабораторная работа № 2. Вариант 18. СибГУТИ
Shamrock
: 2 февраля 2015
Отношения и их свойства
Бинарное отношение R на конечном множестве A: R принадлежит A2 – задано списком упорядоченных пар вида (a,b), где a,b принадлежат A. Требования на множество – те же, что и раньше (в нем не должно встречаться повторяющихся элементов, кроме того, оно должно быть упорядочено по возрастанию). Программа должна определять свойства заданного отношения: рефлексивность, симметричность, антисимметричность, транзитивность (по материалам главы 1, п.1.3). Проверку свойств выполнять по
220 руб.
Дискретная математика. Лабораторная работа № 1. Вариант 18. СибГУТИ
Shamrock
: 2 февраля 2015
(Деление на варианты не предусмотрено)
Множества и операции над ними
Задание:
Написать программу, в которой для конечных упорядоченных множеств реализовать все основные операции с помощью алгоритма типа слияния (по материалам главы 1, п.1.2). Допустима организация множеств в виде списка или в виде массива.
Работа программы должна происходить следующим образом:
1. На вход подаются два упорядоченных множества A и B (вводятся с клавиатуры, элементы множеств – буквы латинского алфавита).
2. После вв
220 руб.
Дискретная математика. Лабораторная работа № 5. Вариант №18. СибГУТИ
Shamrock
: 2 февраля 2015
(Разбиение на варианты не предусмотрено)
Поиск компонент связности графа
Граф задан его матрицей смежности. Требуется определить количество компонент связности этого графа (по материалам главы 3, п. 3.2.3 и 3.4). При этом должны быть конкретно перечислены вершины, входящие в каждую компоненту связности.
Выбор алгоритма поиска компонент связности – произвольный. Например, приветствуется использование одного из видов обхода (поиск в глубину или поиск в ширину по материалам п. 3.4.3).
Пользователю
220 руб.
СИБГУТИ, Дискретная математика
fred_student
: 2 октября 2014
В данном сборнике решения следующих лабораторных работ:
1. Множества и операции над ними
2. Отношения и их свойства
3. Генерация перестановок
4. Генерация подмножеств
5. Поиск компонент связности графа
Все работы написаны на языке Pascal.
500 руб.
Дискретная математика. Лабораторная работа №4
Bodibilder
: 14 марта 2019
Лабораторная работа No 4 Генерация подмножеств
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве
15 руб.
Дискретная математика. Лабораторная работа №4
sibguter
: 5 июня 2018
Тема: Генерация подмножеств
Задание
Задано целое положительное число n, которое представляет собой мощность некоторого множества. Требуется с минимальными трудозатратами генерировать все подмножества этого множества, для чего каждое последующее подмножество должно получаться из предыдущего путем добавления или удаления только одного элемента. Множество и все его подмножества представляются битовой шкалой. Для генерации использовать алгоритм построения бинарного кода Грея.
В качестве результата в
49 руб.
Другие работы
Аудит. 3 задачи.
studypro3
: 28 ноября 2018
Задание 2
В декабре по требованиям накладным списана краска:
- в основное производство 400 банок для окраски выпущенной продукции
-спортзал – 20 банок для текущего ремонта
-вспомогательное производство -10 банок.
Бухгалтерией сделаны записи:
Дт20 Кт10- 66450 руб.
Дт26 Кт10 -3500 руб.
Дт23 Кт 10 -1750 руб.
Дт26 Кт16 -717 руб.
По данным аналитического учета на счете 10 на 1 декабря числится 70 банок краски на общую сумму 11200 руб. На счете 16 -420 руб.
Данные об остатках и поступлениях в дек
400 руб.
Управление прибылью и рентабельностью на предприятии: анализ практики и пути совершенствования (на примере ООО "Ниго")
DocentMark
: 28 октября 2013
Переход к рыночным отношениям в экономике России расширяет возможности деятельности предприятия, как основного ее звена. В новых условиях существенно поменялись правовые, финансово-экономические и социальные отношения как внутри предприятия, так и во внешней среде. Сложилось многообразие форм собственности, существенно изменились отношения предприятий с государством и другими субъектами рынка. Экономическая свобода, как условие и следствие рыночных отношений, предъявляет более высокие требования
Головка пневматического патрона для зажима кольца по внутренней поверхности - И21.21.00.00 СБ
.Инженер.
: 13 декабря 2023
Иванов Ю.Б. Атлас чертежей общих видов для деталирования. Вариант И21.21.00.00 - Головка пневматического патрона для зажима кольца по внутренней поверхности. Сборочный чертеж. Деталирование. Модели.
Приспособление служит для закрепления наружного кольца сферического шарико- или роликоподшипника по его внутренней сферической поверхности. Перед установкой кольца на приспособление шток 6, жестко связанный с пневматическим приводом, находится в левом положении. Деталь устанавливается на левый конец
700 руб.
Пространственные деревянные конструкции. Расчет вантового покрытия
Диман92
: 11 мая 2015
Задание:
Спроектировать утепленное висячее цилиндрическое покрытие для многоцелевого общественного здания в г. Архангельск. Основными несущими элементами покрытия запроектировать параллельно расположенные с шагом 2 м гибкие растянутые клееные деревянные ванты плотностью ρ=5кН/м^3 пролетом 40 м. По вантам укладываются утепленные клеефанерные панели 〖(g〗_н=0,38 кН/м^2), Поперечный уклон кровли 3%. Класс здания по степени ответственности 1.
150 руб.