Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №9.
Состав работы
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Программа для просмотра текстовых файлов
- Microsoft Word
Описание
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет).
Номер варианта выбирается по последней цифре пароля.
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет).
Номер варианта выбирается по последней цифре пароля.
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Лабораторная работа 4
Оценка:Зачет
Дата оценки: 25.12.2012
Рецензия:
замечаний нет.
Галкина Марина Юрьевна
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Лабораторная работа 4
Оценка:Зачет
Дата оценки: 25.12.2012
Рецензия:
замечаний нет.
Галкина Марина Юрьевна
Похожие материалы
Теория сложностей вычислительных процессов и структур. Лабораторная работа № 4. Вариант №9
nik200511
: 7 июля 2014
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифр
23 руб.
Лабораторная работа № 4 по дисциплине "Теория сложностей вычислительных процессов и структур"
1231233
: 31 января 2012
Лабораторная работа №3
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Вариант 3
23 руб.
Теория сложности вычислительных процессов и структур 9 вариант
Владислав161
: 5 октября 2023
Задание
Написать программу, которая оптимальным образом расставляет скобки при перемножении матриц M1M2M3M4M5M6M7M8M9M10M11M12. Матрицы имеют следующие размерности:
M1[r0xr1], M2[r1xr2], M3[r2xr3], M4[r3xr4], M5[r4xr5], M6[r5xr6], M7[r6xr7], M8[r7xr8], M9[r8xr9], M10[r0xr10], M11[r10xr11], M12[r11xr12].
Размерности матриц считать из файла.
Вывести промежуточные вычисления, результат расстановки скобок и трудоемкость полученной расстановки.
Номер варианта выбирается по последней цифре пароля
300 руб.
Теория сложностей вычислительных процессов и структур
NikolaSuprem
: 9 февраля 2021
Задача 1. Лестница
У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше.
Задача 2. Ход конём
Дана прям
300 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №4.
zhekaersh
: 5 марта 2015
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
40 руб.
Теория сложности вычислительных процессов и структур. Лабораторная работа 4. Вариант 10.
Bodibilder
: 29 мая 2019
Лабораторная работа №4
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирае
28 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа 4. Вариант 1.
nik200511
: 7 июня 2018
Задание
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 1
Вершина 0.
24 руб.
Теория сложности вычислительных процессов и структур. Лабораторная работа №4. Вариант №5
gnv1979
: 29 мая 2017
Лабораторная 4.
Задание
Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 5
Вершина 4.
0 0 0 23 0 0
0 0 0 0 2 0
0 0 0 0 27 0
45 руб.
Другие работы
Структуры и алгоритмы обработки данных. Часть 1, Лабораторная работа № 5
stud82
: 6 октября 2012
Тема: Хэширование и поиск.
Цель работы: Освоить методы построения хэш-таблиц и поиска с помощью хэш-таблиц.
30 руб.
Пневмоцилиндр 00-000.06.26.26.00 solidworks
lepris
: 24 ноября 2021
Пневмоцилиндр 00-000.06.26.26.00 3d модель
Пневмоцилиндр 00-000.06.26.26.00 solidworks
Пневмоцилиндр 00-000.06.26.26.00 сборка
Пневмоцилиндр 00-000.06.26.26.00 скачать солид воркс
Пневмоцилиндр предназначен для передачи механизмам возвратно-поступательного движения. Шариковое стопорное устройство обеспечивает фиксацию этих механизмов в одном из крайних положений.
Шток 1 в сборе с пружиной 22, поршнем 2, уплотнительными кольцами 14,16,20 кольцом 11, с двумя полукольцами 10 и шайбой 24 (крепл
450 руб.
Гидромеханика: Сборник задач и контрольных заданий УГГУ Задача 2.33 Вариант в
Z24
: 4 октября 2025
Определить вертикальную силу F на рычажном механизме, необходимую для удержания поршня на высоте h1 над поверхностью воды в колодце, над поршнем поднимается столб воды высотой h2 (рис. 2.33).
Диаметр поршня равен D, штока – d. Рычажный механизм имеет шарнирную опору в точке А. Длины рычагов механизма соответственно равны а и b (см. рис. 2.33).
Вес поршня и штока не учитывать.
Плотность воды ρ = 10³ кг/м³.
200 руб.
Учет инфляции стоимости строительных работ в бизнес-плане
evelin
: 8 ноября 2013
СОДЕРЖАНИЕ
1. Учет инфляции стоимости строительных работ в бизнес-плане............... 3
Список использованных источников............................................................ 12
1. УЧЕТ ИНФЛЯЦИИ СТОИМОСТИ СТРОИТЕЛЬНЫХ РАБОТ В БИЗНЕС‐ПЛАНЕ
Строительная отрасль относится к наиболее продолжительному производственному циклу и поэтому в наибольшей степени страдает от инфляции. Проблема прогнозирования изменения индекса цен и объемов производства является чрезвычайно сложной даже для услови
5 руб.