Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4.

Состав работы

material.view.file_icon 6803E205-57AA-4922-A2AC-45DBC52B6E69.doc
Работа представляет собой файл, который можно открыть в программе:
  • Microsoft Word

Описание

Билет №4
(Все задачи решаются «вручную»)
1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин

2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.

Дополнительная информация

Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка:Отлично
Дата оценки: 29.12.2012
Рецензия:
поздравляю Вас с успешным завершением курса ТСВПиС.
Галкина Марина Юрьевна
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4.
Билет №4 1. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. Номер товара, i mi сi M 1 7 21 25 2 3 8 3 8 18 52 2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6
User nik200511 : 27 мая 2019
348 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет №4
1.По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин 0 0 1 0 5 0 0 10 6 7 1 10 0 12 4 0 6 12 0 3 5 7 4 3 0 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масс
User sun525 : 10 ноября 2014
30 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет № 4
Билет №4 (Все задачи решаются «вручную») 1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превыша
User nik200511 : 7 июля 2014
46 руб.
Теория сложностей вычислительных процессов и структур. Экзамен. Билет № 4
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №4
Билет №4 1.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать такой набор товаров с максимальной стоимостью, чтобы его суммарная масса не превышала заданную грузоподъемность М. Номер товара, i mi сi M 1 7 21 25 2 3 8 3 8 18 52 2. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 6
User IT-STUDHELP : 20 апреля 2023
380 руб.
Экзамен по дисциплине: Теория сложностей вычислительных процессов и структур. Билет №4 promo
Теория сложностей вычислительных процессов и структур. Экзамен
Билет №5 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
User 1231233 : 15 апреля 2011
23 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User aikys : 18 июня 2016
60 руб.
Теория сложности вычислительных процессов и структур. Экзаменационная работа. Билет 4.
Билет №4 (Все задачи решаются «вручную») 1. По алгоритму Краскала найти остов минимального веса для связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превыша
User Bodibilder : 29 мая 2019
30 руб.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Проектирование и проведение расчета трехслойной клеефанерной панели и двойного дощатого настила
Содержание расчетно-пояснительной части 1. Введение 2. Конструирование клеефанерных панелей покрытия 3. Материал конструкций панели 4. Расчет 3-хслойной клеефанерной панели 4.1. Конструирование панели 4.2. Теплотехнический расчет 4.3. Расчет верхней обшивки на местный изгиб 4.4. Сбор нагрузок на панель 4.5. Определение внутренних усилий 4.6. Определение приведенных геометрических характеристик 4.7. Проверка нижней обшивки на растяжение при изгибе 4.8. Проверка верхней обшивки на сжатие и устойчи
User Aronitue9 : 25 мая 2012
42 руб.
Распределенные системы, Экзамен, билет № 24
1. Алгоритмы балансировки нагрузки в распределенных системах. 2. VM-роль в Windows Azure. Без практич. задания, есть практич. задание по варианту № 3, пишите если нужно
User Fistashka : 16 октября 2017
250 руб.
Контрольная работа по дисциплине: «Электропитание устройств и систем телекоммуникаций» Вариант 9
Задание. В контрольной работе необходимо выполнить следующее: - рассчитать емкость и количество аккумуляторных батарей (элементов), выбрать тип аккумуляторных батарей; - найти ток выпрямителя и мощность, потребляемую ЭПУ от внешней сети; - выбрать типовое выпрямительное устройство; - выбрать вводный шкаф, рассчитать заземляющее устройство и выбрать автомат защиты; - составить функциональную схему системы электропитания и перечень элементов с указанием всех типов выбранного оборудования. Исходны
User Hermes : 16 июня 2023
300 руб.
Экзаменационная работа по истории
Экзаменационная работа по истории. Билет № 23. 1. Общественная мысль и особенности общественного движения России в первой половине ХIХ в.: движение декабристов, славянофилы и западники, теория «официальной народности». 2. Внешняя политика советского государства в 60-е – 80-е гг.: успехи и неудачи.?
User Tehnik : 20 ноября 2016
50 руб.
up Наверх