Математический анализ (ч. 2-я). Контрольная работа. Вариант №9
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Вариант No9
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Математический анализ (часть 2)
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 10.06.2014
Рецензия:Уважаемый
существенных замечаний нет. Ваша работа зачтена.
Агульник Ольга Николаевна
Оценена Ваша работа по предмету: Математический анализ (часть 2)
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 10.06.2014
Рецензия:Уважаемый
существенных замечаний нет. Ваша работа зачтена.
Агульник Ольга Николаевна
Похожие материалы
Математический анализ. Контрольная работа. вариант № 9
inwork2
: 18 ноября 2017
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
;
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3 .Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
100 руб.
Математический анализ. Математический анализ. Вариант №9
inwork2
: 25 июня 2017
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
100 руб.
Контрольная работа по дисциплине: Математический Анализ. Вариант №9.
ДО Сибгути
: 27 декабря 2017
Вариант № 9
1. Вычислить несобственный интеграл или доказать его расходимость
2. Вычислить с помощью двойного интеграла объем тела, ограниченного указанными поверхностями
; ; ;
3. Вычислить криволинейный интеграл по координатам
,
где - часть дуги окружности , , лежащая в первом квадранте и «пробегаемая» против хода часовой стрелки.
4. Найти общее решение дифференциального уравнения первого порядка
5. Решить задачу Коши
,
50 руб.
Контрольная работа по дисциплине: Математический анализ. Вариант №9
tanvi
: 23 февраля 2014
Задача 1.
Провести исследование функций с указанием
а) области определения и точек разрыва
б) экстремумов
в) асимптот
По полученным данным построить графики функций.
Задача 2.
Найти неопределенные интегралы.
Задача 3.
Вычислить площади областей, заключенных между линиями:
Контрольная работа по дисциплине: Математический анализ. Вариант №9
mik8184
: 7 июня 2012
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
120 руб.
Контрольная работа по дисциплине: Математический анализ Вариант: 9
Neo555
: 1 февраля 2012
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
100 руб.
Контрольная работа. Математический анализ, дополнительные главы. Вариант №9.
Rufus
: 16 октября 2017
1.Найти интервал сходимости степенного ряда.
2.При помощи вычетов вычислить данный интеграл по контуру.
3. Разложить данную функцию f(x) в ряд Фурье.
4. Найти общее решение дифференциального уравнения.
5.Найти частное решение дифференциального уравнения, удовлетворяющее начальным условиям.
70 руб.
Специальные главы математического анализа. Контрольная работа. Вариант №9.
growlist
: 29 марта 2017
Вариант №9
1. Найти интервал сходимости степенного ряда
2. При помощи вычетов вычислить данный интеграл по контуру.
3. Разложить данную функцию f(x) в ряд Фурье
4. Найти общее решение дифференциального уравнения.
5. Найти частное решение дифференциального уравнения , удовлетворяющее начальным условиям
90 руб.
Другие работы
Проект подметально-уборочной машины для подметания цементобетонных дорожных покрытий и сбора смета в бункер машины
VikkiROY
: 7 декабря 2014
Список чертежей: подметально-уборочная машина, конвейер, оборудование щеточное, схемы рабочего оборудования, спецификации.
Техническая характеристика:
1. Шасси КАМАЗ - 53229
2. Объем бункера для смета 3 м
3. Объем бака для воды 1 м
4. Рабочая скорость подметания 1.38 м/с
5. Давление в системе увлажнения 2.5 атм
Содержание
Введение
Подметально-уборочные машины
Подметально-уборочные машины с механической подачей смета в бункер
Вакуумные подметально-уборочные машины
Вакуумные подм
350 руб.
Контрольная работа по дисциплине: Теория массового обслуживания. Вариант №7.
freelancer
: 16 апреля 2016
Задача №1
Пусть Е1, Е2, Е3 – возможные состояния Марковской цепи и Р – матрица вероятностей переходов из состояния в состояние за один шаг: .
Дать полное описание данной марковской цепи (классифицировать ее состояния). Найти, если это возможно, стационарное распределение вероятностей состояний системы (если невозможно, объяснить - почему).
Задача №2
Поток вызовов, поступающих на АТС, можно считать простейшим. Известно, что время между двумя вызовами в среднем равно 20 сек. Какова вероятность
100 руб.
Контрольная работа по дисциплине: Методы и средства измерений в телекоммуникационных системах. Вариант 2
Учеба "Под ключ"
: 19 ноября 2022
ЧАСТЬ 1. ОБЪЕКТИВНЫЕ ОЦЕНКИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ КОЭФФИЦИЕНТА ОШИБОК
Задание:
При анализе цифровой системы передачи со скоростью В было получено в течение времени Т Nош ошибок. По результатам анализа вычислить следующие статистические параметры:
1) оценку коэффициента ошибок Кош;
2) среднее квадратическое значение Б (у абсолютной погрешности оценки коэффициента ошибок Кош);
3) относительное значение погрешности б при заданной доверительной вероятности Рдов=0,95 и коэффициенте Стьюдента tр =1,2
500 руб.
Расчет тягово-динамических характеристик автомобиля КРАЗ 12 вариант
Алексей266
: 18 января 2016
СОДЕРЖАНИЕ
Введение 4
1 Определение полной массы АТС 5
2 Выбор фактора обтекаемости 5
3 Выбор КПД трансмиссии 5
4 Определение максимальной скорости движения автомобиля и коэффици-ента сопротивления качению 6
5 Построение внешней скоростной характеристики двигателя 7
6 Подбор шин 8
7 Определение параметров силовой передачи 9
7.1 Определение радиуса качения колеса 9
7.2 Определение передаточного числа главной передачи 9
7.3 Определен
350 руб.