Теория сложностей вычислительных процессов и структур. Экзамен. Билет 12

Состав работы

material.view.file_icon
material.view.file_icon Экзамен.doc
material.view.file_icon Рецензия.txt
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word
  • Программа для просмотра текстовых файлов

Описание

Билет №12. (Все задачи решаются «вручную»)

1.По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
{0 0 34 7 0}
и тд..

2.Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформировать такой набор товаров, чтобы его суммарная масса не превышала заданную грузоподъемность М, и стоимость была бы максимальной.
Номер товара, i mi Ci M
1 8 22 26
2 4 11 
3 14 40

Дополнительная информация

Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложностей вычислительных процессов и структур
Вид работы: Экзамен
Оценка:Отлично
Дата оценки: 11.05.2015
Рецензия:Уважаемый, поздравляю Вас с успешным завершение курса ТСВПиС.

Галкина Марина Юрьевна
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12.
Билет №12 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость сi и масса mi. Методом динамического программирования сформировать так
User teacher-sib : 23 февраля 2025
300 руб.
Экзамен По дисциплине: Теория сложности вычислительных процессов и структур. Билет №12. promo
Теория сложностей вычислительных процессов и структур. Билет №12
Билет No12 С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). ((0&6&0&5&2&7@6&0&4&1&3&2@0&4&0&7&4&3@5&1&7&0&6&1@2&3&4&6&0&0@7&2&3&1&0&0)) Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимост
User IT-STUDHELP : 7 июня 2020
450 руб.
Теория сложностей вычислительных процессов и структур. Билет №12 promo
Теория сложностей вычислительных процессов и структур. Экзамен
Билет №5 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]
User 1231233 : 15 апреля 2011
23 руб.
Теория сложности вычислительных процессов и структур (ДВ 2.1) Билет №12.
Уважаемый студент, дистанционного обучения, Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур (ДВ 2.1) Вид работы: Экзамен Оценка:Отлично Дата оценки: 19.01.2019 Рецензия:Уважаемая , замечаний нет. Галкина Марина Юрьевна
User MayaMy : 23 февраля 2019
300 руб.
Теория сложности вычислительных процессов и структур (ДВ 2.1) Билет №12.
Экзамен по дисциплине "Теория сложностей вычислительных процессов и структур ". 5-й семестр. Билет № 12
Билет №12 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования
User mastar : 18 декабря 2012
125 руб.
Экзамен по дисциплине: Теория сложности вычислительных процессов и структур
1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 0 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Оптимальным образом расставить скобки при перемножении матриц М1[3x5], M2[5x2], M3[2x9], М4[9x3], M5[3x6]
User aikys : 18 июня 2016
60 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12
Билет №12 1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 5 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин. Граф задан матрицей смежности, (0 означает, что соответствующей дуги нет). (0 6 0 5 2 7) (6 0 4 1 3 2) (0 4 0 7 4 3) (5 1 7 0 6 1) (2 3 4 6 0 0) (7 2 3 1 0 0) 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара н
User Roma967 : 21 мая 2025
400 руб.
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур. Билет 12 promo
Экзаменационная работа по дисциплине: Теория сложностей вычислительных процессов и структур, билет №12
Билет №12 (Все задачи решаются «вручную») 1. По алгоритму Дейкстры найти кратчайшее расстояние от вершины 1 до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин. 2. Имеется склад, на котором присутствует некоторый ассортимент товаров. Запас каждого товара неограничен. У каждого товара своя стоимость Ci и масса mi. Методом динамического программирования сформ
User selkup : 16 марта 2017
250 руб.
Гипертоническая болезнь
Гипертоническая болезнь (ГБ) - Заболевание, основные проявления которого обусловлены артериальной гипертензией не являющейся симптоматической. Классификация ГБ (ВОЗ) 1 стадия - есть увеличение АД без изменений внутренних органов. 2 стадия - увеличение АД, есть изменения внутренних органов без нарушения функций (ГЛЖ, ИБС, изменения глазного дна). 3 стадия - повышенное АД с изменениями внутренних органов и нарушениями их функций. Мозг (инсульт), сердце (инфаркт), почки (нефросклероз). Классификаци
User evelin : 23 декабря 2012
Теоретическая механика СамГУПС Самара 2020 Задача Д2 Рисунок 4 Вариант 3
Применение принципа Даламбера к определению реакций связи Вертикальный вал АК (рис. Д2.0–Д2.9), вращающийся с постоянной угловой скоростью ω = 10 c-1, закреплен подпятником в точке А и цилиндрическим подшипником в точке, указанной в таблице Д2, в столбце 2. При этом АВ = ВD = DЕ = ЕК = а. К валу жестко прикреплены однородный стержень 1 длиной l = 0,6 м, имеющий массу m1 =3 кг, и невесомый стержень 2 длиной l2 = 0,4 м и с точечной массой m2 = 5 кг на конце. Оба стержня лежат в одной плоскости.
User Z24 : 9 ноября 2025
250 руб.
Теоретическая механика СамГУПС Самара 2020 Задача Д2 Рисунок 4 Вариант 3
Функциональные возможности и структура ПК оценивания режима Космос. Проведение оперативных расчетов режима энергосистемы с использованием ПК Космос
ОИК как упорядоченное представление "сырой" телеметрической информации Модель управления энергосистемы и оценка состояния Процесс оценивания режима Использование задачи оценивания режима в ОДУ Урала Главное меню ПК "Космос" Последовательность действий Анализ режимов: детализация схем замещения, схема управления объекта Управление оборудованием: состоянием линии или трансформатора, генерацией (потреблением), состоянием коммутационного оборудования, состоянием реакторов, коэффициентами трансформац
User evelin : 25 февраля 2013
10 руб.
Теплотехника СибАДИ 2009 Задача 5 Вариант 13
Одноцилиндровый одноступенчатый поршневой компрессор сжимает воздух от атмосферного давления р1=0,1 МПа до требуемого давления р2. Определить эффективную мощность привода компрессора и необходимую мощность электродвигателя с запасом 10% на перегрузку, если диаметр цилиндра D (м), ход поршня S (м), частота вращения вала n (об/c), относительный объем вредного пространства δ=0,05, показатель политропы расширения остающегося во вредном объеме газа m, коэффициент, учитывающий, уменьшение давления газ
User Z24 : 14 декабря 2025
150 руб.
Теплотехника СибАДИ 2009 Задача 5 Вариант 13
up Наверх