Основы теории массового обслуживания. Контрольная работа. Вариант №5.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача No1.
В учениях участвуют два корабля A и B, которые одновременно производят выстрелы друг в друга через равные промежутки времени. При каждом обмене выстрелами корабль A поражает корабль B с вероятностью 0,6, а корабль B поражает корабль A с вероятностью 0,75. Предполагается, что при любом попадании корабль выходит из строя. Определить матрицу вероятностей переходов, если состояниями цепи Маркова являются комбинации: Е1 – оба корабля в строю, Е2 – в строю только корабль A, Е3 – в строю только корабль B, Е4 – оба корабля поражены. Найти стационарное распределение вероятностей состояний.
Задача 2.
Рассматривается установившийся режим работы Марковской СМО типа М/M/1/K. Интенсивность входного потока и интенсивность обслуживания λ=1,5, μ=2,85 соответственно, К=3.
1. Нарисовать диаграмму интенсивностей переходов.
2. Найти среднее число требований в системе.
3. Определить среднее число требований в очереди - .
4. Определить среднее время обслуживания - .
Задача 3.
Цепь Маркова задана следующей диаграммой интенсивностей:
1. Составить уравнения равновесия.
2. Найти стационарное распределение вероятностей состояний системы.
3. Определить среднее время возвращения в каждое состояние.
В учениях участвуют два корабля A и B, которые одновременно производят выстрелы друг в друга через равные промежутки времени. При каждом обмене выстрелами корабль A поражает корабль B с вероятностью 0,6, а корабль B поражает корабль A с вероятностью 0,75. Предполагается, что при любом попадании корабль выходит из строя. Определить матрицу вероятностей переходов, если состояниями цепи Маркова являются комбинации: Е1 – оба корабля в строю, Е2 – в строю только корабль A, Е3 – в строю только корабль B, Е4 – оба корабля поражены. Найти стационарное распределение вероятностей состояний.
Задача 2.
Рассматривается установившийся режим работы Марковской СМО типа М/M/1/K. Интенсивность входного потока и интенсивность обслуживания λ=1,5, μ=2,85 соответственно, К=3.
1. Нарисовать диаграмму интенсивностей переходов.
2. Найти среднее число требований в системе.
3. Определить среднее число требований в очереди - .
4. Определить среднее время обслуживания - .
Задача 3.
Цепь Маркова задана следующей диаграммой интенсивностей:
1. Составить уравнения равновесия.
2. Найти стационарное распределение вероятностей состояний системы.
3. Определить среднее время возвращения в каждое состояние.
Дополнительная информация
Зачет. Год сдачи 2015. Кокорева Елена Викторовна
Похожие материалы
Контрольная работа. Основы теории массового обслуживания
ART1800
: 8 мая 2013
Задача № 1.
50% детей выпускников НГТУ учатся в НГТУ, 30% в других вузах и 20% в вузы не поступают. Из детей, родители которых окончили другие вузы, учатся в НГТУ – 25%, в других вузах – 60%, нигде не учатся – 15%. Для детей, родители которых не имеют высшего образования, эти проценты соответственно – 10, 40, 50.
Какова вероятность того, что в НГТУ будет учиться:
а) Правнук выпускника НГТУ;
б) Праправнук;
в) Достаточно отдаленный родственник
Задача № 2.
Рассматривается установившийся режим раб
150 руб.
Основы теории массового обслуживания. Контрольная работа. Вариант №1
Gila
: 17 января 2019
Задача No 1
Дано:
Поток сообщений интенсивностью λ= 12 с-1, разбивается на четыре подпотока (вероятности указаны на рисунке):
Задача No2
Дано:
Для СМО типа M/M/1 со следующими параметрами: интенсивность поступления требований λ=1, среднее время обслуживания х ̅=0,45 определить:
1.Среднее число требований в СМО.
2.Среднее время пребывания требования в СМО.
3.Среднюю длину очереди.
4.Среднее время ожидания обслуживания.
5.Вероятность того, то в СМО нет требований.
200 руб.
Контрольная работа. Основы теории массового обслуживания. Вариант 04
sifonius
: 15 декабря 2017
Рассмотрим однородную цепь Маркова, диаграмма состояний которой име-ет следующий вид:
Требуется: 1. Составить матрицу Р переходных вероятностей.
3. Найти вектор стационарного распределения вероятностей состояний.
4. Найти среднее время возвращения в каждое состояние
Задача No2
В учреждении три телефона-автомата, расположенных в вестибюле, в одном месте. Известно, что средняя продолжительность телефонного разговора 3 ми-нуты, а поток людей, желающих поговорить по телефону, можно считать про-сте
150 руб.
Контрольная работа по дисциплине: «Основы теории массового обслуживания». 5-й вариант
Student2
: 18 марта 2015
Задача №1
В учениях участвуют два корабля A и B, которые одновременно производят выстрелы друг в друга через равные промежутки времени. При каждом обмене выстрелами корабль A поражает корабль B с вероятностью 0,6; а корабль B поражает корабль A с вероятностью 0,75. Предполагается, что при любом попадании корабль выходит из строя. Определить матрицу вероятностей переходов, если состояниями цепи Маркова являются комбинации: Е1 – оба корабля в строю, Е2 – в строю только корабль A, Е3 – в строю толь
250 руб.
Контрольная работа По дисциплине: «Основы теории массового обслуживания» Вариант-8
Jerryamantipe03
: 11 декабря 2022
Контрольная работа По дисциплине: «Основы теории массового обслуживания» Вариант-8 2020 год выполнения.
(Пример работы)
Задача №1.
Прибор может находиться в рабочем состоянии Е1, в ожидании ремонта Е2, в ремонте Е3. Вероятности перехода из состояния в состояние в течение суток заданы матрицей:
200 руб.
Контрольная работа по предмету "Основы теории массового обслуживания" вариант 13
ZhmurovaUlia
: 5 февраля 2019
Задача №1
Рассмотрим дискретную цепь Маркова, для которой задана матрица вероятностей переходов:.
Требуется: 1. Нарисовать диаграмму переходов цепи Маркова;
3. Найти вектор стационарного распределения вероятностей p.
4. Найти среднее время возвращения в каждое состояние.
Задача №2
Имеется двухканальная марковская СМО с отказами (M/M/2). На ее вход поступает поток заявок с интенсивностью заявки/ч. Среднее время обслуживания одной заявки ч. Каждая обслуженная заявка приносит доход руб.
120 руб.
Контрольная работа по дисциплине: Основы теории массового обслуживания. Вариант №11
konst1992
: 31 января 2018
Задача No1
Рассмотрим однородную цепь Маркова, диаграмма состояний которой имеет следующий вид:
Требуется: 1. Составить матрицу Р переходных вероятностей.
3. Найти вектор стационарного распределения вероятностей состояний.
4. Найти среднее время возвращения в каждое состояние
Задача No2
В учреждении три телефона-автомата, расположенных в вестибюле, в одном месте. Известно, что средняя продолжительность телефонного разговора 3 минуты, а поток людей, желающих поговорить по телефону, можно счита
300 руб.
Контрольная работа по дисциплине: «Основы теории массового обслуживания», вариант 24
ннааттаа
: 7 января 2018
Задача No1.
Матрица вероятностей перехода цепи Маркова имеет вид: .
Распределение по состояниям в момент времени t = 0 определяется вектором:
(0) = (0.7; 0.2; 0.1).
Найти:
а) распределение по состояниям в моменты t = 1, 2, 3, 4.
в) стационарное распределение.
Задача No2.
На автозаправочной станции установлены три колонки для выдачи бензина. Около станции находится площадка на три машины для их ожидания в очереди (машина, которой не досталось место, уезжает на другую заправку). На станцию
300 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.