Основы теории массового обслуживания. Контрольная работа. Вариант №5.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача No1.
В учениях участвуют два корабля A и B, которые одновременно производят выстрелы друг в друга через равные промежутки времени. При каждом обмене выстрелами корабль A поражает корабль B с вероятностью 0,6, а корабль B поражает корабль A с вероятностью 0,75. Предполагается, что при любом попадании корабль выходит из строя. Определить матрицу вероятностей переходов, если состояниями цепи Маркова являются комбинации: Е1 – оба корабля в строю, Е2 – в строю только корабль A, Е3 – в строю только корабль B, Е4 – оба корабля поражены. Найти стационарное распределение вероятностей состояний.
Задача 2.
Рассматривается установившийся режим работы Марковской СМО типа М/M/1/K. Интенсивность входного потока и интенсивность обслуживания λ=1,5, μ=2,85 соответственно, К=3.
1. Нарисовать диаграмму интенсивностей переходов.
2. Найти среднее число требований в системе.
3. Определить среднее число требований в очереди - .
4. Определить среднее время обслуживания - .
Задача 3.
Цепь Маркова задана следующей диаграммой интенсивностей:
1. Составить уравнения равновесия.
2. Найти стационарное распределение вероятностей состояний системы.
3. Определить среднее время возвращения в каждое состояние.
В учениях участвуют два корабля A и B, которые одновременно производят выстрелы друг в друга через равные промежутки времени. При каждом обмене выстрелами корабль A поражает корабль B с вероятностью 0,6, а корабль B поражает корабль A с вероятностью 0,75. Предполагается, что при любом попадании корабль выходит из строя. Определить матрицу вероятностей переходов, если состояниями цепи Маркова являются комбинации: Е1 – оба корабля в строю, Е2 – в строю только корабль A, Е3 – в строю только корабль B, Е4 – оба корабля поражены. Найти стационарное распределение вероятностей состояний.
Задача 2.
Рассматривается установившийся режим работы Марковской СМО типа М/M/1/K. Интенсивность входного потока и интенсивность обслуживания λ=1,5, μ=2,85 соответственно, К=3.
1. Нарисовать диаграмму интенсивностей переходов.
2. Найти среднее число требований в системе.
3. Определить среднее число требований в очереди - .
4. Определить среднее время обслуживания - .
Задача 3.
Цепь Маркова задана следующей диаграммой интенсивностей:
1. Составить уравнения равновесия.
2. Найти стационарное распределение вероятностей состояний системы.
3. Определить среднее время возвращения в каждое состояние.
Дополнительная информация
Зачет. Год сдачи 2015. Кокорева Елена Викторовна
Похожие материалы
Контрольная работа. Основы теории массового обслуживания
ART1800
: 8 мая 2013
Задача № 1.
50% детей выпускников НГТУ учатся в НГТУ, 30% в других вузах и 20% в вузы не поступают. Из детей, родители которых окончили другие вузы, учатся в НГТУ – 25%, в других вузах – 60%, нигде не учатся – 15%. Для детей, родители которых не имеют высшего образования, эти проценты соответственно – 10, 40, 50.
Какова вероятность того, что в НГТУ будет учиться:
а) Правнук выпускника НГТУ;
б) Праправнук;
в) Достаточно отдаленный родственник
Задача № 2.
Рассматривается установившийся режим раб
150 руб.
Основы теории массового обслуживания. Контрольная работа. Вариант №1
Gila
: 17 января 2019
Задача No 1
Дано:
Поток сообщений интенсивностью λ= 12 с-1, разбивается на четыре подпотока (вероятности указаны на рисунке):
Задача No2
Дано:
Для СМО типа M/M/1 со следующими параметрами: интенсивность поступления требований λ=1, среднее время обслуживания х ̅=0,45 определить:
1.Среднее число требований в СМО.
2.Среднее время пребывания требования в СМО.
3.Среднюю длину очереди.
4.Среднее время ожидания обслуживания.
5.Вероятность того, то в СМО нет требований.
200 руб.
Контрольная работа. Основы теории массового обслуживания. Вариант 04
sifonius
: 15 декабря 2017
Рассмотрим однородную цепь Маркова, диаграмма состояний которой име-ет следующий вид:
Требуется: 1. Составить матрицу Р переходных вероятностей.
3. Найти вектор стационарного распределения вероятностей состояний.
4. Найти среднее время возвращения в каждое состояние
Задача No2
В учреждении три телефона-автомата, расположенных в вестибюле, в одном месте. Известно, что средняя продолжительность телефонного разговора 3 ми-нуты, а поток людей, желающих поговорить по телефону, можно считать про-сте
150 руб.
Контрольная работа по дисциплине: «Основы теории массового обслуживания». 5-й вариант
Student2
: 18 марта 2015
Задача №1
В учениях участвуют два корабля A и B, которые одновременно производят выстрелы друг в друга через равные промежутки времени. При каждом обмене выстрелами корабль A поражает корабль B с вероятностью 0,6; а корабль B поражает корабль A с вероятностью 0,75. Предполагается, что при любом попадании корабль выходит из строя. Определить матрицу вероятностей переходов, если состояниями цепи Маркова являются комбинации: Е1 – оба корабля в строю, Е2 – в строю только корабль A, Е3 – в строю толь
250 руб.
Контрольная работа По дисциплине: «Основы теории массового обслуживания» Вариант-8
Jerryamantipe03
: 11 декабря 2022
Контрольная работа По дисциплине: «Основы теории массового обслуживания» Вариант-8 2020 год выполнения.
(Пример работы)
Задача №1.
Прибор может находиться в рабочем состоянии Е1, в ожидании ремонта Е2, в ремонте Е3. Вероятности перехода из состояния в состояние в течение суток заданы матрицей:
200 руб.
Контрольная работа по предмету "Основы теории массового обслуживания" вариант 13
ZhmurovaUlia
: 5 февраля 2019
Задача №1
Рассмотрим дискретную цепь Маркова, для которой задана матрица вероятностей переходов:.
Требуется: 1. Нарисовать диаграмму переходов цепи Маркова;
3. Найти вектор стационарного распределения вероятностей p.
4. Найти среднее время возвращения в каждое состояние.
Задача №2
Имеется двухканальная марковская СМО с отказами (M/M/2). На ее вход поступает поток заявок с интенсивностью заявки/ч. Среднее время обслуживания одной заявки ч. Каждая обслуженная заявка приносит доход руб.
120 руб.
Контрольная работа по дисциплине: Основы теории массового обслуживания. Вариант №11
konst1992
: 31 января 2018
Задача No1
Рассмотрим однородную цепь Маркова, диаграмма состояний которой имеет следующий вид:
Требуется: 1. Составить матрицу Р переходных вероятностей.
3. Найти вектор стационарного распределения вероятностей состояний.
4. Найти среднее время возвращения в каждое состояние
Задача No2
В учреждении три телефона-автомата, расположенных в вестибюле, в одном месте. Известно, что средняя продолжительность телефонного разговора 3 минуты, а поток людей, желающих поговорить по телефону, можно счита
300 руб.
Контрольная работа по дисциплине: «Основы теории массового обслуживания», вариант 24
ннааттаа
: 7 января 2018
Задача No1.
Матрица вероятностей перехода цепи Маркова имеет вид: .
Распределение по состояниям в момент времени t = 0 определяется вектором:
(0) = (0.7; 0.2; 0.1).
Найти:
а) распределение по состояниям в моменты t = 1, 2, 3, 4.
в) стационарное распределение.
Задача No2.
На автозаправочной станции установлены три колонки для выдачи бензина. Около станции находится площадка на три машины для их ожидания в очереди (машина, которой не досталось место, уезжает на другую заправку). На станцию
300 руб.
Другие работы
Бухгалтерские информационные системы. 6-й вариант.
studypro3
: 16 июля 2020
Рейтинговая работа 2
6. Приходный кассовый ордер в программе 1С Бухгалтерия
Отразите приход денежных средств в кассу предприятия от учреди-теля Гвоздева В.Н. суммы 550000 руб. 12.02.2011 в счет вклада в устав-ный капитал.
500 руб.
Курсовая работа. Направляющие системы электросвязи. Вариант №4
agentorange
: 23 сентября 2017
Курсовой проект на тему: ПРОЕКТИРОВАНИЕ МАГИСТРАЛЬНЫХ И ВНУТРИЗОНОВЫХ ВОЛП
04 Самара - Казань 1,55 1,475 1,471
Содержание
Введение
1. Выбор трассы для проектируемого участка
2. Расчет необходимого числа каналов
3. Расчет параметров оптического кабеля
4. Выбор системы передачи и определение емкости кабеля
5. Выбор конструкции оптического кабеля
6. Расчет длины участка регенерации ВОЛП
7. Составление сметы
8. Расчет параметров надежности ВОЛП
9. Указания по монтажу, эксплуатации и хранения
200 руб.
Договор личного страхования
tbtsnf
: 29 ноября 2020
Введение
Актуальность данной темы подтверждает возрастающая роль страхования в стране, ведь с каждым годом количество заключаемых договоров личного страхования увеличивается. Более того, в виду того, что права личности - приоритетное направление для защиты правового государства, законодательство о страховании личности, ее жизни и здоровья, требует тщательного исследования, выявления его преимуществ и недостатков.
750 руб.
Схемотехника телекоммуникационных устройств
deanasera84
: 4 ноября 2019
Лабораторная работа 3 Вариант 03
1. Цель работы
Исследовать свойства и характеристики схем интегратора и дифференциатора на основе операционного усилителя (ОУ).
Лабораторные исследования
3.1. Исследование влияния сопротивления обратной связи R2 на амплитудно-частотную характеристику схемы интегратора. Определим рабочую частоту fраб для R2 = 10 кОм и R2 = 100 кОм.
С помощью осциллографа исследуем переходные характеристики схемы интегратора при значениях сопротивления R2=10кОм и 100кОм. Для этог
200 руб.