Основы теории массового обслуживания. Контрольная работа. Вариант №5.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача No1.
В учениях участвуют два корабля A и B, которые одновременно производят выстрелы друг в друга через равные промежутки времени. При каждом обмене выстрелами корабль A поражает корабль B с вероятностью 0,6, а корабль B поражает корабль A с вероятностью 0,75. Предполагается, что при любом попадании корабль выходит из строя. Определить матрицу вероятностей переходов, если состояниями цепи Маркова являются комбинации: Е1 – оба корабля в строю, Е2 – в строю только корабль A, Е3 – в строю только корабль B, Е4 – оба корабля поражены. Найти стационарное распределение вероятностей состояний.
Задача 2.
Рассматривается установившийся режим работы Марковской СМО типа М/M/1/K. Интенсивность входного потока и интенсивность обслуживания λ=1,5, μ=2,85 соответственно, К=3.
1. Нарисовать диаграмму интенсивностей переходов.
2. Найти среднее число требований в системе.
3. Определить среднее число требований в очереди - .
4. Определить среднее время обслуживания - .
Задача 3.
Цепь Маркова задана следующей диаграммой интенсивностей:
1. Составить уравнения равновесия.
2. Найти стационарное распределение вероятностей состояний системы.
3. Определить среднее время возвращения в каждое состояние.
В учениях участвуют два корабля A и B, которые одновременно производят выстрелы друг в друга через равные промежутки времени. При каждом обмене выстрелами корабль A поражает корабль B с вероятностью 0,6, а корабль B поражает корабль A с вероятностью 0,75. Предполагается, что при любом попадании корабль выходит из строя. Определить матрицу вероятностей переходов, если состояниями цепи Маркова являются комбинации: Е1 – оба корабля в строю, Е2 – в строю только корабль A, Е3 – в строю только корабль B, Е4 – оба корабля поражены. Найти стационарное распределение вероятностей состояний.
Задача 2.
Рассматривается установившийся режим работы Марковской СМО типа М/M/1/K. Интенсивность входного потока и интенсивность обслуживания λ=1,5, μ=2,85 соответственно, К=3.
1. Нарисовать диаграмму интенсивностей переходов.
2. Найти среднее число требований в системе.
3. Определить среднее число требований в очереди - .
4. Определить среднее время обслуживания - .
Задача 3.
Цепь Маркова задана следующей диаграммой интенсивностей:
1. Составить уравнения равновесия.
2. Найти стационарное распределение вероятностей состояний системы.
3. Определить среднее время возвращения в каждое состояние.
Дополнительная информация
Зачет. Год сдачи 2015. Кокорева Елена Викторовна
Похожие материалы
Контрольная работа. Основы теории массового обслуживания
ART1800
: 8 мая 2013
Задача № 1.
50% детей выпускников НГТУ учатся в НГТУ, 30% в других вузах и 20% в вузы не поступают. Из детей, родители которых окончили другие вузы, учатся в НГТУ – 25%, в других вузах – 60%, нигде не учатся – 15%. Для детей, родители которых не имеют высшего образования, эти проценты соответственно – 10, 40, 50.
Какова вероятность того, что в НГТУ будет учиться:
а) Правнук выпускника НГТУ;
б) Праправнук;
в) Достаточно отдаленный родственник
Задача № 2.
Рассматривается установившийся режим раб
150 руб.
Основы теории массового обслуживания. Контрольная работа. Вариант №1
Gila
: 17 января 2019
Задача No 1
Дано:
Поток сообщений интенсивностью λ= 12 с-1, разбивается на четыре подпотока (вероятности указаны на рисунке):
Задача No2
Дано:
Для СМО типа M/M/1 со следующими параметрами: интенсивность поступления требований λ=1, среднее время обслуживания х ̅=0,45 определить:
1.Среднее число требований в СМО.
2.Среднее время пребывания требования в СМО.
3.Среднюю длину очереди.
4.Среднее время ожидания обслуживания.
5.Вероятность того, то в СМО нет требований.
200 руб.
Контрольная работа. Основы теории массового обслуживания. Вариант 04
sifonius
: 15 декабря 2017
Рассмотрим однородную цепь Маркова, диаграмма состояний которой име-ет следующий вид:
Требуется: 1. Составить матрицу Р переходных вероятностей.
3. Найти вектор стационарного распределения вероятностей состояний.
4. Найти среднее время возвращения в каждое состояние
Задача No2
В учреждении три телефона-автомата, расположенных в вестибюле, в одном месте. Известно, что средняя продолжительность телефонного разговора 3 ми-нуты, а поток людей, желающих поговорить по телефону, можно считать про-сте
150 руб.
Контрольная работа По дисциплине: «Основы теории массового обслуживания» Вариант-8
Jerryamantipe03
: 11 декабря 2022
Контрольная работа По дисциплине: «Основы теории массового обслуживания» Вариант-8 2020 год выполнения.
(Пример работы)
Задача №1.
Прибор может находиться в рабочем состоянии Е1, в ожидании ремонта Е2, в ремонте Е3. Вероятности перехода из состояния в состояние в течение суток заданы матрицей:
200 руб.
Контрольная работа по предмету "Основы теории массового обслуживания" вариант 13
ZhmurovaUlia
: 5 февраля 2019
Задача №1
Рассмотрим дискретную цепь Маркова, для которой задана матрица вероятностей переходов:.
Требуется: 1. Нарисовать диаграмму переходов цепи Маркова;
3. Найти вектор стационарного распределения вероятностей p.
4. Найти среднее время возвращения в каждое состояние.
Задача №2
Имеется двухканальная марковская СМО с отказами (M/M/2). На ее вход поступает поток заявок с интенсивностью заявки/ч. Среднее время обслуживания одной заявки ч. Каждая обслуженная заявка приносит доход руб.
120 руб.
Контрольная работа по дисциплине: Основы теории массового обслуживания. Вариант №11
konst1992
: 31 января 2018
Задача No1
Рассмотрим однородную цепь Маркова, диаграмма состояний которой имеет следующий вид:
Требуется: 1. Составить матрицу Р переходных вероятностей.
3. Найти вектор стационарного распределения вероятностей состояний.
4. Найти среднее время возвращения в каждое состояние
Задача No2
В учреждении три телефона-автомата, расположенных в вестибюле, в одном месте. Известно, что средняя продолжительность телефонного разговора 3 минуты, а поток людей, желающих поговорить по телефону, можно счита
300 руб.
Контрольная работа по дисциплине: «Основы теории массового обслуживания», вариант 24
ннааттаа
: 7 января 2018
Задача No1.
Матрица вероятностей перехода цепи Маркова имеет вид: .
Распределение по состояниям в момент времени t = 0 определяется вектором:
(0) = (0.7; 0.2; 0.1).
Найти:
а) распределение по состояниям в моменты t = 1, 2, 3, 4.
в) стационарное распределение.
Задача No2.
На автозаправочной станции установлены три колонки для выдачи бензина. Около станции находится площадка на три машины для их ожидания в очереди (машина, которой не досталось место, уезжает на другую заправку). На станцию
300 руб.
Контрольная работа по дисциплине: Основы теории массового обслуживания. Вариант 11.
freelancer
: 21 августа 2016
Вариант 11
Задача No1
Рассмотрим однородную цепь Маркова, диаграмма состояний которой имеет следующий вид:
Требуется: 1. Составить матрицу Р переходных вероятностей.
3. Найти вектор стационарного распределения вероятностей состояний.
4. Найти среднее время возвращения в каждое состояние
Задача No2
В учреждении три телефона-автомата, расположенных в вестибюле, в одном месте. Известно, что средняя продолжительность телефонного разговора 3 минуты, а поток людей, желающих поговорить по телефону,
80 руб.
Другие работы
Инжектор колтюбинговой установки МК-20Т-Чертеж-Оборудование для капитального ремонта, обработки пласта, бурения и цементирования нефтяных и газовых скважин-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 5 июня 2016
Инжектор колтюбинговой установки МК-20Т-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для капитального ремонта, обработки пласта, бурения и цементирования нефтяных и газовых скважин-Курсовая работа-Дипломная работа
596 руб.
Основы телекоммуникаций. Билет №1
Ureon
: 21 февраля 2022
Экзамен
По дисциплине: "Основы телекоммуникаций"
Билет №1
1. Выберите правильную формулу определения энтропии
2. Используется ли буферизация в сетях с коммутацией каналов?
3. Приведите структурную схему спутниковой системы передачи, поясните назначение элементов схемы
4. Перечислите этапы преобразования аналогового сигнала в цифровой сигнал. Приведите пример такого преобразования.
Преподаватель - Мелентьев Олег Геннадьевич
300 руб.
Вычислительная математика. Курсовая работа. Вариант №9
nik200511
: 18 декабря 2013
Напряжение в электрической цепи описывается дифференциальным уравнением с начальным условием:
Написать программу, которая определит количество теплоты, выделяющегося на единичном сопротивлении за единицу времени. Количество теплоты определяется по формуле:
Дифференциальное уравнение решить методов Рунге-Кутта четвертого порядка с точностью 10-4 (для достижения заданной точности использовать метод двойного пересчета). Интеграл вычислить по формуле Симпсона с шагом 0.1. Для нахождения значений
147 руб.
Административное 11-ти этажное здание с несущими продольными и поперечными стенами
DocentMark
: 25 октября 2012
Архитектура
Инженерная оценка района строительства
Климатическая характеристика района строительства
Обоснования к генеральному плану
Объёмно-планировочное решение
Конструктивное решение
Список используемой литературы
Геодезическая часть
Указания по производству геодезических работ
Геодезические работы при зачистке дна котлована
Геодезические работы при устройстве монолитных стен
Геодезические работы при устройстве подкранового пути башенного крана
Список используемой литературы
Расчет плиты л
499 руб.