Контрольная работа по дисциплине: Теория вероятностей математическая статистика и случайные процессы. Вариант №2
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
Задание 1.
Вероятность соединения при телефонном вызове равна 0,9. Какова вероятность, что соединение произойдёт только при 4-ом вызове?
Задание 2.
В одной урне 5 белых шаров и 4 чёрных шаров, а в другой – 4 белых и 6 чёрных. Из первой урны случайным образом вынимают 3 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 3 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3.
В типографии имеется 6 печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна 0,3. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше 3-х.
Задние 4.
Непрерывная случайная величина задана ее функцией распределения.
Найти параметр С, плотность распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал [1,5; 2,5] и квантиль порядка 0,8.
Задание 5
Продолжительность телефонного разговора распределена по показательному закону с параметром l =0,25 (1/мин.). Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%?
Вероятность соединения при телефонном вызове равна 0,9. Какова вероятность, что соединение произойдёт только при 4-ом вызове?
Задание 2.
В одной урне 5 белых шаров и 4 чёрных шаров, а в другой – 4 белых и 6 чёрных. Из первой урны случайным образом вынимают 3 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 3 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3.
В типографии имеется 6 печатных машин. Для каждой машины вероятность того, что она работает в данный момент, равна 0,3. Построить ряд распределения числа работающих машин, построить функцию распределения этой случайной величины, найти МО, дисперсию, а также вероятность того, что число работающих машин будет не больше 3-х.
Задние 4.
Непрерывная случайная величина задана ее функцией распределения.
Найти параметр С, плотность распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал [1,5; 2,5] и квантиль порядка 0,8.
Задание 5
Продолжительность телефонного разговора распределена по показательному закону с параметром l =0,25 (1/мин.). Разговор по телефону - автомату прерывается через три минуты от начала разговора. Какова доля прерванных разговоров? Каким должно быть время до прерывания разговора, чтобы доля прерванных разговоров не превышала 1%?
Дополнительная информация
Работа успешно зачтена.
Выполняю работы на заказ по различным дисциплинам. Пишите на почту: LRV967@ya.ru
Выполняю работы на заказ по различным дисциплинам. Пишите на почту: LRV967@ya.ru
Похожие материалы
Контрольная работа по дисциплине: Теория вероятностей математическая статистика и случайные процессы. Вариант №2
Багдат
: 11 июня 2016
Задание 1.
Вероятность соединения при телефонном вызове равна 0,9. Какова вероятность, что соединение произойдёт только при 4-ом вызове?
Задание 2.
В одной урне 5 белых шаров и 4 чёрных шаров, а в другой – 4 белых и 6 чёрных. Из первой урны случайным образом вынимают 3 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 3 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3.
В типографии имеется 6 печатных машин. Для каждой машины
425 руб.
Контрольная работа по дисциплине: Теория вероятностей, математическая статистика и случайные процессы. Вариант №2
Amor
: 19 октября 2013
Задание 10.2: В каждой из двух урн содержится 8 черных и 2 белых шара. Из второй урны наудачу извлечен один шар и переложен в первую. Найти вероятность того, что шар, извлеченный из первой урны, окажется черным.
Задание 11.2: Среднее число вызовов, поступающих на АТС в 1 мин, равно двум. Найти вероятность того, что за 4 мин поступит: а) 5 вызовов; б) менее пяти вызовов; в) более пяти вызовов. Предполагается, что поток вызовов – простейший.
В задачах 12.1-12.10 требуется найти: а) математическ
220 руб.
Контрольная работа по дисциплине: Теория вероятности, математическая статистика и случайные процессы
pepol
: 16 декабря 2014
Задача № 10.7
Два стрелка произвели по одному выстрелу по мишени. Вероятность поражения мишени каждым из стрелков равна 0,9.
Задача № 11.7
Вероятность появления события в каждом из независимых испытаний равна 0,2.
Задача № 12.7
Найти:
а) математическое ожидание;
б) дисперсию;
в) среднее квадратическое отклонение дискретной случайной величины X по заданному закону её распределения, заданному таблично
Задача № 13.7
Заданы математическое ожидание а и среднее квадратическое отклонение s норм
50 руб.
Теория вероятностей математическая статистика и случайные процессы
Кирилл81
: 26 января 2017
Задача 1 (текст 2): вероятность появления поломок на каждой из k = 4 соединительных линий равна p = 0,1. Какова вероятность того, что хотя бы две линии исправны?
Решение:
В данном случае имеется последовательность испытаний по схеме Бернулли, т.к. испытания независимы, и вероятность успеха (соединительная линия будет исправна) р=1-0,1=0,9 одинакова во всех испытаниях. Тогда по формуле Бернулли при n=4, р=0,9, q=1-p=1-0,9=0,1
80 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Билет № 9
1. Тема: Независимость событий.
Задача: Монету подбросили два раза. События: А – первый раз выпал герб, В– число выпавших гербов больше числа выпавших цифр. Зависимы ли эти события?
2. Тема: Мат. ожидание непрерывной с.в.
Задача: Случайная величина задана плотностью распределения. Найти её мат. ожидание.
150 руб.
Теория вероятностей, математическая статистика и случайные процессы
tefant
: 1 февраля 2013
Контрольная работа. Вариант 9,
По дисциплине: Теория вероятностей, математическая статистика и случайные процессы
Задача 1
Вероятность появления поломок на каждой из 4 соединительных линий равна 0,25. Какова вероятность того, что хотя бы две линии исправны?
200 руб.
Теория вероятностей, математическая статистика и случайные процессы
1231233
: 24 апреля 2010
Задача 1. Вероятность появления поломок на каждой из 6 соединительных линий равна 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2. В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3. В типографии имеется 5 печатных машин. Для каждой
23 руб.
Контрольная работа по дисциплине: Теория вероятностей математическая статистика и случайные процессы. Вариант №3
Jack
: 14 февраля 2017
Вариант No3
Задача 1:
Вероятность появления поломок на каждой из 6 соединительных линий равна 0,2. Какова вероятность того, что хотя бы две линии исправны?
Задача 2:
В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3:
В типографии имеется 5 печатных машин
350 руб.
Другие работы
Информационные технологии. Экзаменационная работа, Билет № 11
Александр410
: 5 января 2020
Вопрос 1. Назовите основные положения по определению качества на сетях передачи данных.
Вопрос 2. Сопоставьте каждому уровню ЭМ ВОС набор действующих на этом уровне протоколов
Вопрос 3. Эксплуатация с точки зрения TMN
350 руб.
Депрессивность и стрессоустойчивость подростков с двигательными тиками, способы их определения и коррекции
evelin
: 15 октября 2013
Введение
Глава 1. Теоретическая часть
1.1. Депрессия и депрессивность
1.2 Депрессивная акцентуация личности
1.3 Эмоциональный стресс и стрессоустойчивость
1.4 Двигательные тики
1.4.1 Симптомы и факторы возникновения тикозных гиперкинезов
1.4.2 Стресс, как одна из причин двигательных тиков
1.4.3 Эмоциональное состояние ребенка и развитие двигательных тиков
Глава 2. Практическая часть
2.1 Характеристика объекта исследования
2.2 Диагностика депрессивности подростков по методикам Бека
Биржи и их роль в рыночной экономике
evelin
: 2 ноября 2012
1. ВОЗНИКНОВЕНИЕ И РАЗВИТИЕ БИРЖИ
Биржа возникла в ХIII-ХV веках в Северной Италии, но широкое
применение в деловом мире получила в ХVI веке в Антверпене, Лионе
и Тулузе, затем в Лондоне и Гамбурге. С ХVII века биржи уже дейс-
твовали во многих торговых городах европейских государств.
Под биржами подразумевались здания, где собираются деловые
люди и причастные к торговле лица для ведения переговоров и зак-
лючения оптовых торговых сделок в соответствии с установленными
правилами.
10 руб.
ММА/ИДО Специализированные пакеты профессиональной деятельности Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Специализированные пакеты профессиональной деятельности Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. Под архитектурой предприятия (EA - Enterprise Architecture), обычно понимается
2. Бизнес-архитектура описывает предприятие с позиции
3. Архитектура информационных технологий описывает предприятие с п
150 руб.