Визуализация численных методов.
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
- Программа для просмотра текстовых файлов
- MathCAD
Описание
Визуализация численных методов.
Решение обыкновенных дифференциальных уравнений».
Вариант 14, 16, 17
Чтобы решить обыкновенное дифференциальное уравнение, необходимо знать значения зависимой переменной и (или) её производных при некоторых значениях независимой переменной. Если эти дополнительные условия задаются при одном значении независимой переменной, то такая задача называется задачей с начальными условиями, или задачей Коши. Часто в задаче Коши в роли независимой переменной выступает время.
Задачу Коши можно сформулировать следующим образом.
Содержание:
Введение………………………………………………………………….3
1. Постановка задачи…………………………………………………….4
2. Описание методов решения…………………………………………..5
2. 1. Суть задачи………………………………………………………….5
2. 2. Геометрический смысл задачи…………………………………….5
2. 3. Численные методы решения задачи Коши……………………….6
2. 4. Метод Эйлера……………………………………………………….9
2. 5. Метод Эйлера модифицированный……………………………….9
2. 6. Метод Рунге-Кутта 4-го порядка………………………………….10
2. 7. Решение поставленной задачи методами Эйлера и Эйлера модифицированного…………………………………………………………….12
2. 7. 1. Метод Эйлера……………………………………………………12
2. 7. 2. Метод Эйлера модифицированный……………………………13
3. Алгоритм решения задачи…………………………………………...16
3. 1. Алгоритмы подпрограмм.………………………………………....16
3. 1. 1. Подпрограмма метода Эйлера………………………………….16
3. 1. 2 Подпрограмма метода Эйлера модифицированного…………..16
3. 1. 3. Подпрограмма общего решения и поиска максимальных значений x и y……………………………………………………………………17
3. 2. Алгоритм функции…………………………………………………17
3. 3. Алгоритм программы………………………………………………19
4. Форма программы…………………………………………………….20
5. Листинг программы…………………………………………………..21
6. Решение задачи в MathCad…………………………………………..23
Заключение………………………………………………………………25
Решение обыкновенных дифференциальных уравнений».
Вариант 14, 16, 17
Чтобы решить обыкновенное дифференциальное уравнение, необходимо знать значения зависимой переменной и (или) её производных при некоторых значениях независимой переменной. Если эти дополнительные условия задаются при одном значении независимой переменной, то такая задача называется задачей с начальными условиями, или задачей Коши. Часто в задаче Коши в роли независимой переменной выступает время.
Задачу Коши можно сформулировать следующим образом.
Содержание:
Введение………………………………………………………………….3
1. Постановка задачи…………………………………………………….4
2. Описание методов решения…………………………………………..5
2. 1. Суть задачи………………………………………………………….5
2. 2. Геометрический смысл задачи…………………………………….5
2. 3. Численные методы решения задачи Коши……………………….6
2. 4. Метод Эйлера……………………………………………………….9
2. 5. Метод Эйлера модифицированный……………………………….9
2. 6. Метод Рунге-Кутта 4-го порядка………………………………….10
2. 7. Решение поставленной задачи методами Эйлера и Эйлера модифицированного…………………………………………………………….12
2. 7. 1. Метод Эйлера……………………………………………………12
2. 7. 2. Метод Эйлера модифицированный……………………………13
3. Алгоритм решения задачи…………………………………………...16
3. 1. Алгоритмы подпрограмм.………………………………………....16
3. 1. 1. Подпрограмма метода Эйлера………………………………….16
3. 1. 2 Подпрограмма метода Эйлера модифицированного…………..16
3. 1. 3. Подпрограмма общего решения и поиска максимальных значений x и y……………………………………………………………………17
3. 2. Алгоритм функции…………………………………………………17
3. 3. Алгоритм программы………………………………………………19
4. Форма программы…………………………………………………….20
5. Листинг программы…………………………………………………..21
6. Решение задачи в MathCad…………………………………………..23
Заключение………………………………………………………………25
Похожие материалы
ВИЗУАЛИЗАЦИЯ ЧИСЛЕННЫХ МЕТОДОВ. 20-й вариант
falling666
: 11 ноября 2015
ВИЗУАЛИЗАЦИЯ ЧИСЛЕННЫХ МЕТОДОВ.
РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
Чтобы решить обыкновенное дифференциальное уравнение, необходимо знать значения зависимой переменной и (или) её производных при некоторых значениях независимой переменной. Если эти дополнительные условия задаются при одном значении независимой переменной, то такая задача называется задачей с начальными условиями, или задачей Коши. Часто в задаче Коши в роли независимой переменной выступает время.
Задачу Коши можно сф
50 руб.
Визуализация численных методов. Варианты №№12, 13
falling666
: 11 ноября 2015
Визуализация численных методов.
Решение обыкновенных дифференциальных уравнений».
12, 13
Чтобы решить обыкновенное дифференциальное уравнение, необходимо знать значения зависимой переменной и (или) её производных при некоторых значениях независимой переменной. Если эти дополнительные условия задаются при одном значении независимой переменной, то такая задача называется задачей с начальными условиями, или задачей Коши. Часто в задаче Коши в роли независимой переменной выступает время.
Задачу Коши
200 руб.
ВИЗУАЛИЗАЦИЯ ЧИСЛЕННЫХ МЕТОДОВ. Варианты №№1, 5, 7
falling666
: 11 ноября 2015
ВИЗУАЛИЗАЦИЯ ЧИСЛЕННЫХ МЕТОДОВ.
РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
три варианта работ
Чтобы решить обыкновенное дифференциальное уравнение, необходимо знать значения зависимой переменной и (или) её производных при некоторых значениях независимой переменной. Если эти дополнительные условия задаются при одном значении независимой переменной, то такая задача называется задачей с начальными условиями, или задачей Коши. Часто в задаче Коши в роли независимой переменной выступает время.
З
200 руб.
Визуализация численных методов. Решение обыкновенных дифференциальных уравнений
falling666
: 11 ноября 2015
Курсовая по инф-ке(9 вариант)
Содержание
Введение. 3
1. Постановка задачи и математическая модель. 4
2. Описание численных методов (применительно к конкретной задаче) 5
3. Блок-схемы программ и основных подпрограмм. 9
4. Листинг программы на языке VisualBasic. 15
5. Формы проекта 18
6. Решение задачи в Mahtcad. 20
Заключение. 22
Курсовая по инф-ке
ВАРИАНТ №11:
«Визуализация численных методов.
Решение обыкновенных дифференциальных уравнений».
Введение
1. Постановка задачи
2. Описание используе
200 руб.
Другие работы
Формирование новых мировых центров притяжения трудовых ресурсов
Slolka
: 6 ноября 2013
Содержание
Введение………………………………………………………………..3
1. Международная миграция трудовых ресурсов: понятие, виды….5
2. Международная организация по миграции (МОМ)……………..14
3. Основные мировые центры притяжения трудовых ресурсов….17
Заключение……………………………………………………………20
Список литературы…………………………………………………..23
Введение
Важной формой международного сотрудничества является международное перемещение факторов производства. Оно включает:
• международное перемещение трудовых ресурсов;
• международное
5 руб.
Разработка конструкции аппарата очистки воздуха от мелкодисперсных примесей
Рики-Тики-Та
: 12 января 2012
Содержание
Содержание 2
Введение 3
1 Патентный поиск 4
1.1 Описание наиболее интересных конструкций мокрых пылеуловителей. 13
2 Технологическая часть 22
2.1 Описание технологической схемы 22
2.2 Описание работы аппарата очистки воздуха 23
2.3 Расчёт параметров центробежного вентилятора 25
2.4 Расчёт мощности дв
55 руб.
Техническая термодинамика и теплотехника УГНТУ Задача 8 Вариант 67
Z24
: 20 декабря 2025
Водяной пар с начальным давлением р1=5 МПа и степенью сухости х1=0,95 поступает в пароперегреватель, где его температура повышается на Δt; после перегревателя пар изоэнтропно (адиабатно) расширяется в турбине до давления p2. Пользуясь h-s — диаграммой для водяного пара (приложение Д, рисунок Д1), определить:
— количество теплоты (на 1 кг пара), подведенной к нему в пароперегревателе;
— работу цикла Ренкина и степень сухости пара х2 в конце расширения;
— термический КПД цикла;
— работ
180 руб.
КР. Вариант 1. Оценка стоимости бизнеса.
studypro3
: 6 августа 2018
Задание
контрольная работа по теме «Оценка бизнеса»
ОАО «Управляющая компания «Прогресс»
1. ИСХОДНЫЕ ДАННЫЕ ДЛЯ РАСЧЕТА СТОИМОСТИ ПРЕДПРИЯТИЯ ИМУЩЕСТВЕННЫМ ПОДХОДОМ
1.1. Основные средства
- Рыночная стоимость зданий и сооружений составляет 1,1 от балансовой стоимости
- Рыночная стоимость машин и оборудования составляет 1,01 от балансовой стоимости
1.2. Незавершенное строительство.
- Рыночная стоимость незавершенного строительства составляет 100% от балансовой стоимости
1.3. Запасы
- Ры
400 руб.