Визуализация численных методов.
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
- Программа для просмотра текстовых файлов
- MathCAD
Описание
Визуализация численных методов.
Решение обыкновенных дифференциальных уравнений».
Вариант 14, 16, 17
Чтобы решить обыкновенное дифференциальное уравнение, необходимо знать значения зависимой переменной и (или) её производных при некоторых значениях независимой переменной. Если эти дополнительные условия задаются при одном значении независимой переменной, то такая задача называется задачей с начальными условиями, или задачей Коши. Часто в задаче Коши в роли независимой переменной выступает время.
Задачу Коши можно сформулировать следующим образом.
Содержание:
Введение………………………………………………………………….3
1. Постановка задачи…………………………………………………….4
2. Описание методов решения…………………………………………..5
2. 1. Суть задачи………………………………………………………….5
2. 2. Геометрический смысл задачи…………………………………….5
2. 3. Численные методы решения задачи Коши……………………….6
2. 4. Метод Эйлера……………………………………………………….9
2. 5. Метод Эйлера модифицированный……………………………….9
2. 6. Метод Рунге-Кутта 4-го порядка………………………………….10
2. 7. Решение поставленной задачи методами Эйлера и Эйлера модифицированного…………………………………………………………….12
2. 7. 1. Метод Эйлера……………………………………………………12
2. 7. 2. Метод Эйлера модифицированный……………………………13
3. Алгоритм решения задачи…………………………………………...16
3. 1. Алгоритмы подпрограмм.………………………………………....16
3. 1. 1. Подпрограмма метода Эйлера………………………………….16
3. 1. 2 Подпрограмма метода Эйлера модифицированного…………..16
3. 1. 3. Подпрограмма общего решения и поиска максимальных значений x и y……………………………………………………………………17
3. 2. Алгоритм функции…………………………………………………17
3. 3. Алгоритм программы………………………………………………19
4. Форма программы…………………………………………………….20
5. Листинг программы…………………………………………………..21
6. Решение задачи в MathCad…………………………………………..23
Заключение………………………………………………………………25
Решение обыкновенных дифференциальных уравнений».
Вариант 14, 16, 17
Чтобы решить обыкновенное дифференциальное уравнение, необходимо знать значения зависимой переменной и (или) её производных при некоторых значениях независимой переменной. Если эти дополнительные условия задаются при одном значении независимой переменной, то такая задача называется задачей с начальными условиями, или задачей Коши. Часто в задаче Коши в роли независимой переменной выступает время.
Задачу Коши можно сформулировать следующим образом.
Содержание:
Введение………………………………………………………………….3
1. Постановка задачи…………………………………………………….4
2. Описание методов решения…………………………………………..5
2. 1. Суть задачи………………………………………………………….5
2. 2. Геометрический смысл задачи…………………………………….5
2. 3. Численные методы решения задачи Коши……………………….6
2. 4. Метод Эйлера……………………………………………………….9
2. 5. Метод Эйлера модифицированный……………………………….9
2. 6. Метод Рунге-Кутта 4-го порядка………………………………….10
2. 7. Решение поставленной задачи методами Эйлера и Эйлера модифицированного…………………………………………………………….12
2. 7. 1. Метод Эйлера……………………………………………………12
2. 7. 2. Метод Эйлера модифицированный……………………………13
3. Алгоритм решения задачи…………………………………………...16
3. 1. Алгоритмы подпрограмм.………………………………………....16
3. 1. 1. Подпрограмма метода Эйлера………………………………….16
3. 1. 2 Подпрограмма метода Эйлера модифицированного…………..16
3. 1. 3. Подпрограмма общего решения и поиска максимальных значений x и y……………………………………………………………………17
3. 2. Алгоритм функции…………………………………………………17
3. 3. Алгоритм программы………………………………………………19
4. Форма программы…………………………………………………….20
5. Листинг программы…………………………………………………..21
6. Решение задачи в MathCad…………………………………………..23
Заключение………………………………………………………………25
Похожие материалы
Визуализация численных методов. Варианты №№12, 13
falling666
: 11 ноября 2015
Визуализация численных методов.
Решение обыкновенных дифференциальных уравнений».
12, 13
Чтобы решить обыкновенное дифференциальное уравнение, необходимо знать значения зависимой переменной и (или) её производных при некоторых значениях независимой переменной. Если эти дополнительные условия задаются при одном значении независимой переменной, то такая задача называется задачей с начальными условиями, или задачей Коши. Часто в задаче Коши в роли независимой переменной выступает время.
Задачу Коши
200 руб.
ВИЗУАЛИЗАЦИЯ ЧИСЛЕННЫХ МЕТОДОВ. 20-й вариант
falling666
: 11 ноября 2015
ВИЗУАЛИЗАЦИЯ ЧИСЛЕННЫХ МЕТОДОВ.
РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
Чтобы решить обыкновенное дифференциальное уравнение, необходимо знать значения зависимой переменной и (или) её производных при некоторых значениях независимой переменной. Если эти дополнительные условия задаются при одном значении независимой переменной, то такая задача называется задачей с начальными условиями, или задачей Коши. Часто в задаче Коши в роли независимой переменной выступает время.
Задачу Коши можно сф
50 руб.
Визуализация численных методов. Решение обыкновенных дифференциальных уравнений
falling666
: 11 ноября 2015
Курсовая по инф-ке(9 вариант)
Содержание
Введение. 3
1. Постановка задачи и математическая модель. 4
2. Описание численных методов (применительно к конкретной задаче) 5
3. Блок-схемы программ и основных подпрограмм. 9
4. Листинг программы на языке VisualBasic. 15
5. Формы проекта 18
6. Решение задачи в Mahtcad. 20
Заключение. 22
Курсовая по инф-ке
ВАРИАНТ №11:
«Визуализация численных методов.
Решение обыкновенных дифференциальных уравнений».
Введение
1. Постановка задачи
2. Описание используе
200 руб.
ВИЗУАЛИЗАЦИЯ ЧИСЛЕННЫХ МЕТОДОВ. Варианты №№1, 5, 7
falling666
: 11 ноября 2015
ВИЗУАЛИЗАЦИЯ ЧИСЛЕННЫХ МЕТОДОВ.
РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
три варианта работ
Чтобы решить обыкновенное дифференциальное уравнение, необходимо знать значения зависимой переменной и (или) её производных при некоторых значениях независимой переменной. Если эти дополнительные условия задаются при одном значении независимой переменной, то такая задача называется задачей с начальными условиями, или задачей Коши. Часто в задаче Коши в роли независимой переменной выступает время.
З
200 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.