Зачет. Билет №9, алгебра и геометрия
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Билет № 9
1. Кривые второго порядка. Канонические уравнения. Основные свойства.
2. Решить матричное уравнение , где
. A=(-2 1) B=(2 4) C=(-9 3)
(-1 1) (1 -1) (-1 7)
3. Даны векторы
a=(2;-3;1) b=(-3;1;2) c=(1;2;3)
найти
(a+b)*(b*c)
4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
9x^2-6y^2-18x+36y-99=0
1. Кривые второго порядка. Канонические уравнения. Основные свойства.
2. Решить матричное уравнение , где
. A=(-2 1) B=(2 4) C=(-9 3)
(-1 1) (1 -1) (-1 7)
3. Даны векторы
a=(2;-3;1) b=(-3;1;2) c=(1;2;3)
найти
(a+b)*(b*c)
4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
9x^2-6y^2-18x+36y-99=0
Дополнительная информация
зачет
Похожие материалы
СибГУТИ. Алгебра и геометрия. Зачет, экзамен. Билет №9
Дмитрий103
: 10 июня 2017
1. Кривые второго порядка. Канонические уравнения. Основные свойства.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
_____________
Алгебра и геометрия. 1 семестр. Зачёт. Билет №9.
58197
: 30 января 2012
Билет №9.
1. Матричные уравнения. Решение систем с помощью обратной матрицы.
2. Взаимное расположение двух плоскостей.
3. Найти точку пресечения прямой, отсекающей на осях координат отрезки 2 и -3 и прямой, проходящей через точки (-1;1) и (0;3).
4. Привести уравнение кривой к простейшему виду, построить
5. Найти модуль вектора .
10 руб.
Алгебра и геометрия, экзамен, билет №9, семестр 1, зачет
Е2
: 9 июня 2018
Билет № 9
Задание 1. Кривые второго порядка. Канонические уравнения. Основные свойства.
Задание 2. Решить матричное уравнение , где
Задание 3. Даны векторы
Задание 4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Задание 5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
400 руб.
Зачет по алгебре и геометрии
chita261
: 28 декабря 2014
билет № 3
1. Разложение определителя по строке и столбцу. Определитель п –го порядка.
2. Коллинеарность и компланарность векторов. Угол между векторами.
3. Найти длину высоты, опущенной из вершины В в АВС, если А (-2;1), В(2; 3), С (-4;2).
4 Написать уравнение плоскости, проходящей через начало координат и перпендикулярной к прямой x-6/2=y+1/=3z-2/4
5. Выполнить действия:
100 руб.
Зачет по Алгебре и геометрии
Дарья31
: 10 сентября 2014
БИЛЕТ № 15
1. Коллинеарность и компланарность векторов. Угол между векторами.
2. Уравнения прямой в пространстве.
3. Вычислить , где .
4. Привести уравнение кривой к простейшему виду и построить
5. Написать уравнение плоскости, проходящей через начало координат и перпендикулярной к прямой
.
100 руб.
Экзамен «Алгебра и геометрия». Билет №9
Екатерина179
: 23 апреля 2017
Билет № 9
1. Кривые второго порядка. Канонические уравнения. Основные свойства.
2. Решить матричное уравнение , где...
3. Даны векторы (рис)
Найти .
4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет (рис)
150 руб.
Алгебра и геометрия. Экзамен БИЛЕТ № 9
Галина7
: 21 мая 2015
1. Кривые второго порядка. Канонические уравнения. Основные свойства.
2. Решить матричное уравнение , где
.
Обозначим:
A = -21-11
B = 241-1
C = -93-17
3. Даны векторы
Найти .
a ̅+b ̅=(2-3; -3+1;1+2)=(-1;-2;3)
b ̅×c ̅=|(i&j&k@-3&1&2@1&2&3)|=i(3-4)-j(-9-2)+k(-6-1)=(-1;11;-7)
a ̅×b ̅=|(i&j&k@-1&-2&3@-1&11&-1)|
4. Даны координаты вершин пирамиды
A(1; 1; –1), B(0; –2; 1), C(5; 1; 6), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из верши
70 руб.
Экзамен по предмету "Алгебра и Геометрия". Билет №9
ashley
: 24 февраля 2014
БИЛЕТ № 9
1. Матричные уравнения. Решение систем с помощью обратной матрицы.
2. Взаимное расположение двух плоскостей.
3. Найти точку пресечения прямой, отсекающей на осях координат отрезки 2 и -3 и прямой, проходящей через точки (-1;1) и (0;3).
4. Привести уравнение кривой к простейшему виду, построить
5. Найти модуль вектора , если .
250 руб.
Другие работы
Основные парадигмы политической науки
Elfa254
: 11 января 2014
Несмотря на развитие научного знания содержание «политики» постоянно остается открытым, подвергаясь изменениям и дополнениям по мере возникновения новых теоретических моделей. Оно демонстрирует тщетность однозначных интерпретаций феномена политики, стремления поймать ее вечно ускользающую специфику в границах единожды найденной логики, без доопределения уже имеющихся дефиниций альтернативными суждениями. Множественность складывающихся образов политики – неоспоримое свидетельство полисубстанциона
10 руб.
В чем же причина большой живучести института семьи?
GnobYTEL
: 4 марта 2013
В чем же причина большой живучестиинститута семьи? В прошлом и начале нынешнего века много говорилось отом, что семья, как основная замкнутая гетеросексуальная ячейка общества,отомрет и наступит эра свободной любви . Увы, эти предсказания не оправдались.Семья осталась и, видимо, будет оставаться еще длительное время основнойячейкой общества. В чем же причина столь большой живучести института семьи?
В прошлые века семью цементировали потребностивоспитания детей и ведение семейного хозяйства.Но в
5 руб.
Система электроснабжения цеха металлоизделия.
Александр2008
: 5 января 2010
Содержание
Введение
1 Общая часть
1.1 Характеристика объекта ЗСН, электрических нагрузок и
технологического процесса
1.2 Характеристика помещений по взрыво-, пожаро- и электробезопасности
1.3 Категория надежности ЗСН и выбор схемы
электроснабжения
2 Расчетная часть
2.1 Расчет электрических нагрузок
2.2 Расчет и выбор компенсирующего устройства
2.3 Расчет и выбор аппаратов защиты
Введение
Энергетика нашей страны обеспечивает надежное электроснабжение народного хозяйства и жилищно-бытовые нужды
Микроспория волосистой части головы. Стрептококковое импетиго
evelin
: 1 февраля 2013
Жалобы:
На очаг обломанных волос, в теменной области, размером около 4 см в диаметре, с округлым очертанием, четкими границами (кожа в области очага густо покрыта муковидными чешуйками).
На появление тонкостенных, величиной с булавочную головку, заполненных прозрачной жидкостью пузырьков расположенных на лице. На месте вскрывшихся пузырьков образование светло-желтых тонких корочек.
Anamnesis morbi:
Первые признаки заболевания проявились 15 ноября 2008 г, при расчесывании волос в теменной области