Контрольная работа №2 по дисциплине: Математический анализ. Вариант №9.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями образует пирамиду V. Пусть s — основание пирамиды, принадлежащие плоскости (P); l— контур, ограничивающий s; n — нормаль к s, направленная вне пирамиды V. Требуется вычислить:
1) поток векторного поля F через поверхность s в направлении нормали n;
2) циркуляцию векторного поля F по замкнутому контуру l непосредственно и применив теорему Стокса к контуру l и ограниченной им поверхности s с нормалью n;
3) поток векторного поля F через полную поверхность пирамиды V в направлении внешней нормали к ее поверхности непосредственно и применив теорему Остроградского. Сделать чертеж.
Дополнительная информация
Оценка: "Отлично"
Год сдачи: 2014.
Год сдачи: 2014.
Похожие материалы
Контрольная работа №2 по дисциплине: Математический анализ. 2-й семестр. Вариант № 9
58197
: 30 сентября 2012
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk и плоскость (p) Ax+By+Cz+D=0, которая совместно с координатными плоскостями об
60 руб.
Контрольная работа №2 по дисциплине: Математический анализ
pepol
: 5 декабря 2013
вариант№7
1. Вычертить область плоскости по данным условиям:
2. Найти все особые точки функции, определить их характер (для полюсов указать порядок) и вычислить вычеты в них.
3. При помощи вычетов вычислить данный интеграл по контуру.
100 руб.
Математический анализ. Математический анализ. Вариант №9
inwork2
: 25 июня 2017
Задача 1. Найти пределы функций:
Задача 2. Найти значение производных данных функций в точке x=0:
Задача 3. Провести исследование функций с указанием
а) области определения и точек разрыва; б) экстремумов; с) асимптот.
По полученным данным построить графики функций.
Задача 4. Найти неопределенные интегралы:
Задача 5. Вычислить площади областей, заключённых между линиями:
100 руб.
Математический анализ. Вариант №9
Spiritmad
: 12 октября 2017
Дистанционное обучение
Дисциплина «Математический анализ». Часть 1
Вариант № 9
1. Найти пределы
2. Найти производные данных функций
3. Исследовать методами дифференциального исчисления функцию . Используя результаты исследования, построить её график.
4. Дана функция . Найти все её частные производные второго порядка.
5. Найти неопределенные интегралы
100 руб.
Математический анализ. Вариант №9
Rufus
: 11 октября 2017
Задача 1
Найти пределы функции:
Задача 2
Найти значения производных данной функции в точке x=0:
Задача 3
Провести исследование функций с указанием:
1. Области определения и разрыва
2. Экстремумов
3. Асимптот
По полученным данным построить график функции
100 руб.
Математический анализ. Вариант №9
max23
: 10 марта 2016
Задача 1
Провести исследование функции y=x^2-2lnx
Задача 2
Найти неопределенные интегралы:
cosx/(〖sin〗^2 x) dx
arccosx∙dx
Задача 3
Вычислить площадь фигуры, ограниченной линиями y=x^5-5x+6;y=-2x+6.
250 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №2
xtrail
: 12 апреля 2013
Вариант №2
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
z=2x^(2)+3xy+y^(2); A(2;1), a(3;-4)
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0). (см.скрин)
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
z=0, x=9-y^(2), x^(2)+y^(2)=9
650 руб.
Контрольная работа №2 по дисциплине: Математический анализ. Вариант №1
konst1992
: 27 января 2018
1. Даны функция z=z(x,y), точка A(x0;y0) и вектор a(ax;ay). Найти: 1) grad z в точке А. 2) производную в точке А по направлению вектора a.
2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением в декартовых координатах (a>0).
3. Вычислить с помощью тройного интеграла объем тела, ограниченного указанными поверхностями.
4. Даны векторное поле F=Xi+Yj+Zk — контур, ограничивающий s;и плоскость (p) Ax+By+Cz+D=0, ко
130 руб.
Другие работы
Чертеж - Стенд для притирки клапанов. Сборочный чертеж
Рики-Тики-Та
: 15 июля 2018
Чертеж - Стенд для притирки клапанов. Сборочный чертеж
11 руб.
Математический анализ (часть 2) В-5
banderas0876
: 7 мая 2015
Задача 1. Провести исследование функций с указанием: а) области определения и точек разрыва; б) экстремумов; с) асимптот. По полученным данным построить графики функций.
Решение:
а) Область определения функции – вся числовая прямая, то есть . Точек разрыва нет, вертикальных асимптот нет.
б) Экстремумы. Вычислим первую производную.
Чтобы найти экстремум функции, необходимо ее производную приравнять к нулю:
.
Выражение (2) равно нулю тогда и только тогда, когда .
100 руб.
В.В. Данилевский. Справочник молодого машиностроителя.
Администратор
: 20 марта 2007
Файл в формате DjVu.
В книге приводятся справочные данные по материалам, применяемым в машиностроении, межоперационным припускам, допускам и посадкам, а также достижимой шероховатости поверхности при обработке на металлорежущих станках. А также рекомендации о применении смазочно-охлаждающих жидкостей при резании материалов.
Факторинг и рынок гражданской авиации
alfFRED
: 23 октября 2013
Рынок гражданской авиации России - это сложная и развивающаяся система. Кроме главных игроков - авиакомпаний и аэропортов, на рынке работают транспортные и туристические агентства, экспедиторы, хендлинговые и кейтеринговые компании, компании по обеспечению воздушных судов авиаГСМ, лизинговые и страховые компании.
В некоторых случаях авиакомпании и аэропорты объединены в сложные структуры, часто хендлинговые и кейтеринговые службы не выделяются в отдельные компании, а являются структурными подра
10 руб.