Турбобур ЗТСШ1-195. Курсовая работа-Оборудование для бурения нефтяных и газовых скважин
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
- Компас или КОМПАС-3D Viewer
- Программа для просмотра изображений
Описание
Несмотря на сокращение объема буровых работ в последние годы, доля турбинного способа бурения по-прежнему составляет более 75% общего объе-ма. В связи с этим внимание к турбобуру как объекту дальнейшего совершен-ствования сохраняется и в настоящее время.
На данный момент глубины скважин увеличиваются, возрастают нагрузки, действующие на бурильную колонну и турбобур в частности. Возникает необ-ходимость увеличения надежности турбобура.
Как объект исследований был выбран турбобур 3ТСШ1-195, серийно вы-пускаемый Кунгурским машиностроительным заводом и являющийся основ-ным гидравлическим забойным двигателем, применяемым для бурения нефтя-ных и газовых скважин.
В данной работе рассматривается причины выхода из строя резинометалличе-ской пяты турбобура (РМП), а также предложены мероприятия по продлению ее срока службы.
НАЗНАЧЕНИЕ, КРАТКАЯ ХАРАКТЕРИСТИКА
Турбобур ЗТСШ1-195 представляет собой 3-х-секционный гидравлический забойный двигатель, осевая опора которого вынесена в отдельный узел -шпиндельную секцию.
В шпиндельной секции устанавливается 25-ступенчатая резинометалличе-ская осевая опора-пята непроточного типа, воспринимающая гидравлическую нагрузку (определяемую перепадом давления на турбине и долоте) и нагрузку массы вращающихся деталей турбобура (валы, система роторов), а также ре-акцию забоя. Преобладающей нагрузкой является гидравлическая. В шпин-дельной секции установлены две радиальных нижних опоры для снижения ам-плитуды радиальных колебаний долота.
В каждой турбинной секции устанавливается цельнолитые турбины и ра-диальные опоры.
На валах шпиндельной и турбинной секции детали крепятся с помощью полумуфт на малоконусной резьбе с внутренним упорным торцем.
Соединение валов шпиндельной и турбинных секций осуществляется с
помощью конусно-шлицевых полумуфт (верхней и нижней).
По числу секций турбобуры подразделяются на односекционные, в которых турбина и опорная пята расположены в одном корпусе, и многосекционные, состоящие из нескольких турбинных секций и шпинделя с осевой опорой.
Резинометаллический подшипник состоит из нескольких ступеней. Каждая ступень имеет подпятник, который представляет собой металлический обод с резиновой облицовкой, укрепляемый в корпусе, и стальной диск, расположен-ный на валу турбобура. Резиновая облицовка одного из элементов радиально-го или осевого подшипника обеспечивает его работу со смазкой буровым рас-твором. Резинометаллические опоры турбобуров в зависимости от условий эксплуатации имеют работоспособность в пределах 50—150 ч.
АНАЛИЗ УСЛОВИЙ И РЕЖИМА ЭКСПЛУАТАЦИИ ТУРБОБУРА
Для эффективного использования турбобура его диаметр и тип следует выби-рать в зависимости от конкретных условии бурения. Наружный диаметр турбо-бура должен быть на 25— 30 мм меньше диаметра долота. Требования к харак-теристике турбобура и числу его секций определяются условиями обеспечения не-обходимого режима работы долота.
Режим эксплуатации турбобура зависит от многих факторов: физико-механические свойства проходимых пород (в первую очередь их абразивность), тип породоразрушающего инструмента, свойства промывочной жидкости, кри-визна скважины, условия залегания горных пород, глубина бурения и т.д.
В качестве примера турбинного бурения можно привести ряд скважин,
расположенных на Вать-Еганском месторождении города Когалыма Тюменской
области.
ТЕХНОЛОГИЯ РЕМОНТА ТУРБОБУРОВ
Ремонт турбобура может быть различный в зависимости от степени износа и повреждения его деталей. К капитальному обычно относят ремонты, связан-ные с заменами на 30% ступеней турбин, вала или корпуса. К среднему ремон-ту относятся ремонты, когда заменяются быстроизнашивающиеся или сравни-тельно не дорогие детали турбобура (осевые и радиальные опоры). В текущий ремонт включаются лишь затраты на ревизию и проверку турбобура и очистку его от шлама. Во всех случаях открепляются резьбовые соединения, поэтому может измениться характеристика турбобура.
Если по каким-либо причинам невозможно доставить турбобур в мастер-скую, его необходимо распрессовать при помощи буровой лебедки. В против-ном случае буровой раствор высохнет и образует корку между статорами и корпусом, что сделает невозможной его разборку даже с применением паровых или нефтяных ванн.
Ниже представлена технология ремонта турбобура, где более подробно рассмотрен ремонт вала.
В основу конструкции резиновых опор турбобура были положены сооб-ражения о механизме работы резиноподшипника на промывочных жидкостях, содержащих значительное количество абразивных частиц (0,5-10%).
Если обе трущиеся поверхности – металлические, твердые частицы внед-ряются и в ту и другую поверхности, причем величина внедрения пропорцио-нальна силе прижатия частицы к поверхностям.
Если одна из трущихся поверхностей эластична, абразивная частица лег-ко внедряется в нее, не вызывая остаточных деформаций на резиновой обклад-ке. Сила нажима вдавленной частицы на металлическую поверхность опреде-ляется упругостью резиновой обкладки и не зависит от нагрузку на опору. Следовательно, соприкасающаяся с резиной металлическая поверхность изна-шивается в несколько раз меньше, чем при контакте двух металлических по-верхностей.
В резинометаллических опорах скольжения рабочая поверхность одного из элементов трения выполнена из резины. Взаимодействие высокоэластичной резины с твердым телом характеризуется весьма значительной площадью при малой нагрузке. Этим в первую очередь и объясняется износоустойчивость ре-зины по отношению к образивной среде и способность РМП работать на водя-ной смазке, когда контактирование трущихся поверхностей становится неиз-бежным из-за малой толщины рабочего слоя. Возникающие при этом зацеп-ления неровностей рабочих поверхностей не приводят к существенному износу и заеданию, как это наблюдается в металлических подшипниках, а сопровож-дается лишь некоторым увеличением трения. Высокой эластичностью резины объясняются и другие важные свойства резинометаллических опор, в частно-сти, слабая чувствительность к небольшим дефектам, допущенным при изго-товлении и сборке опорного узла, а также амортизационные свойства. Основ-ным объектом исследований в области опор турбобура является его пята - наиболее тяжело нагруженный узел всей конструкции.
Ступень пяты турбобура (рисунок ) состоит из обрезиненного подпят-ника 2, соединенного с корпусом турбобура, металлического диска 1 и кольца пяты 3, вращающихся вместе с валом 4.
Осевые нагрузки через одну из сторон диска передаются на соответству-ющую торцовую резиновую пяты. Поперечные нагрузки, действующие на верхнюю часть вала, воспринимаются кольцами пяты, которые опираются на внутренюю радиальную поверхность подпятника.
Изнашивание деталей пяты турбобура – подпятников, дисков и распор-ных колец – вызвано воздействием на них абразива, содержащегося в буровой жидкости, а также вибрационным и ударным характером нагрузок. Вредное влияние на резину этих факторов усиливается в условиях повышенных забой-ных температур, снижающих прочность резины. Действие абразива становится более интенсивным при вибрации поверхностей трения.
Износ дисков пяты.
Характер износа дисков пяты зависит как от технического состояния дру-гих деталей и узлов турбобура, так и от таких факторов, как кривизна ствола скважин, режим бурения, тип и качество промывочной жидкости, конструкция низа бурильной колонны, производительность буровых насосов и др.
Осевой износ дисков может быть одно- и двусторонним. В случае преоб-ладания на долоте нагрузки от гидравлического перепада давления в турбобу-ре и долоте диск пяты изнашивается только снизу, а для других условий нагружения – с двух сторон. Для Западной Сибири характерен односторонний износ дисков пяты.
В процессе проработки ствола скважины и в начальный период работы долота на забое, соответствующей стадии приложения к нему относительно ма-лых осевых нагрузок, имеет место односторонний износ дисков пяты. В после-дующем, по мере увеличения осевой нагрузки на долото, диск пяты будет под-вергаться износу и с другой стороны, как только изменится направление дей-ствующей на него осевой нагрузки. Следовательно, установив, с какой стороны изношен диск пяты, можно определить преобладающее направление действия нагрузки, передаваемой диском пяты подпятником или наоборот – подпятни-ком диску пяты. Следует отметить, что возможен некоторый износ и верхней стороны пяты вследствие периодического контакта соударений последнего с подпятником из-за осевой вибрации бурильного инструмента, обусловленного динамикой работы шарошечного долота на забое скважины. Величина осевого износа стороны диска пяты, соударяющегося с подпятником из-за вибрации забойного инструмента, как правило, принимает наибольшие значения для крайних дисков в комплекте пяты, контактирующих с первыми и последними с самыми нижними и самыми верхними) подпятниками.
Износ подпятников.
В подпятнике подвержены износу и разрушению резиновая обкладка, а износу и деформации – стальной остов по внутреннему диаметру.
Подпятники подвергаются сильному эрозионному воздействию потоком промывочной жидкости, протекающей через их промывочные каналы и окна. Нередко в месте расположения промывочных каналов поток промывочной жидкости вызывает отрыв резины от металлического остова подпятника со всеми вытекающими отсюда последствиями. Наиболее сильно эрозии подвер-гаются проточные пяты, устанавливаемые в турбинные секции.
В качестве повышения износостойкости и к.п.д. пяты турбобура предло-жены: подбор новых материалов для элементов трения пяты; защита пяты тур-бобура от попадания абразивных частиц; применение «плавающей» пяты; ослабление вредного влияния динамических нагрузок; упрочнение поверхно-стей трения и улучшение качества резины и т.д.
На данный момент глубины скважин увеличиваются, возрастают нагрузки, действующие на бурильную колонну и турбобур в частности. Возникает необ-ходимость увеличения надежности турбобура.
Как объект исследований был выбран турбобур 3ТСШ1-195, серийно вы-пускаемый Кунгурским машиностроительным заводом и являющийся основ-ным гидравлическим забойным двигателем, применяемым для бурения нефтя-ных и газовых скважин.
В данной работе рассматривается причины выхода из строя резинометалличе-ской пяты турбобура (РМП), а также предложены мероприятия по продлению ее срока службы.
НАЗНАЧЕНИЕ, КРАТКАЯ ХАРАКТЕРИСТИКА
Турбобур ЗТСШ1-195 представляет собой 3-х-секционный гидравлический забойный двигатель, осевая опора которого вынесена в отдельный узел -шпиндельную секцию.
В шпиндельной секции устанавливается 25-ступенчатая резинометалличе-ская осевая опора-пята непроточного типа, воспринимающая гидравлическую нагрузку (определяемую перепадом давления на турбине и долоте) и нагрузку массы вращающихся деталей турбобура (валы, система роторов), а также ре-акцию забоя. Преобладающей нагрузкой является гидравлическая. В шпин-дельной секции установлены две радиальных нижних опоры для снижения ам-плитуды радиальных колебаний долота.
В каждой турбинной секции устанавливается цельнолитые турбины и ра-диальные опоры.
На валах шпиндельной и турбинной секции детали крепятся с помощью полумуфт на малоконусной резьбе с внутренним упорным торцем.
Соединение валов шпиндельной и турбинных секций осуществляется с
помощью конусно-шлицевых полумуфт (верхней и нижней).
По числу секций турбобуры подразделяются на односекционные, в которых турбина и опорная пята расположены в одном корпусе, и многосекционные, состоящие из нескольких турбинных секций и шпинделя с осевой опорой.
Резинометаллический подшипник состоит из нескольких ступеней. Каждая ступень имеет подпятник, который представляет собой металлический обод с резиновой облицовкой, укрепляемый в корпусе, и стальной диск, расположен-ный на валу турбобура. Резиновая облицовка одного из элементов радиально-го или осевого подшипника обеспечивает его работу со смазкой буровым рас-твором. Резинометаллические опоры турбобуров в зависимости от условий эксплуатации имеют работоспособность в пределах 50—150 ч.
АНАЛИЗ УСЛОВИЙ И РЕЖИМА ЭКСПЛУАТАЦИИ ТУРБОБУРА
Для эффективного использования турбобура его диаметр и тип следует выби-рать в зависимости от конкретных условии бурения. Наружный диаметр турбо-бура должен быть на 25— 30 мм меньше диаметра долота. Требования к харак-теристике турбобура и числу его секций определяются условиями обеспечения не-обходимого режима работы долота.
Режим эксплуатации турбобура зависит от многих факторов: физико-механические свойства проходимых пород (в первую очередь их абразивность), тип породоразрушающего инструмента, свойства промывочной жидкости, кри-визна скважины, условия залегания горных пород, глубина бурения и т.д.
В качестве примера турбинного бурения можно привести ряд скважин,
расположенных на Вать-Еганском месторождении города Когалыма Тюменской
области.
ТЕХНОЛОГИЯ РЕМОНТА ТУРБОБУРОВ
Ремонт турбобура может быть различный в зависимости от степени износа и повреждения его деталей. К капитальному обычно относят ремонты, связан-ные с заменами на 30% ступеней турбин, вала или корпуса. К среднему ремон-ту относятся ремонты, когда заменяются быстроизнашивающиеся или сравни-тельно не дорогие детали турбобура (осевые и радиальные опоры). В текущий ремонт включаются лишь затраты на ревизию и проверку турбобура и очистку его от шлама. Во всех случаях открепляются резьбовые соединения, поэтому может измениться характеристика турбобура.
Если по каким-либо причинам невозможно доставить турбобур в мастер-скую, его необходимо распрессовать при помощи буровой лебедки. В против-ном случае буровой раствор высохнет и образует корку между статорами и корпусом, что сделает невозможной его разборку даже с применением паровых или нефтяных ванн.
Ниже представлена технология ремонта турбобура, где более подробно рассмотрен ремонт вала.
В основу конструкции резиновых опор турбобура были положены сооб-ражения о механизме работы резиноподшипника на промывочных жидкостях, содержащих значительное количество абразивных частиц (0,5-10%).
Если обе трущиеся поверхности – металлические, твердые частицы внед-ряются и в ту и другую поверхности, причем величина внедрения пропорцио-нальна силе прижатия частицы к поверхностям.
Если одна из трущихся поверхностей эластична, абразивная частица лег-ко внедряется в нее, не вызывая остаточных деформаций на резиновой обклад-ке. Сила нажима вдавленной частицы на металлическую поверхность опреде-ляется упругостью резиновой обкладки и не зависит от нагрузку на опору. Следовательно, соприкасающаяся с резиной металлическая поверхность изна-шивается в несколько раз меньше, чем при контакте двух металлических по-верхностей.
В резинометаллических опорах скольжения рабочая поверхность одного из элементов трения выполнена из резины. Взаимодействие высокоэластичной резины с твердым телом характеризуется весьма значительной площадью при малой нагрузке. Этим в первую очередь и объясняется износоустойчивость ре-зины по отношению к образивной среде и способность РМП работать на водя-ной смазке, когда контактирование трущихся поверхностей становится неиз-бежным из-за малой толщины рабочего слоя. Возникающие при этом зацеп-ления неровностей рабочих поверхностей не приводят к существенному износу и заеданию, как это наблюдается в металлических подшипниках, а сопровож-дается лишь некоторым увеличением трения. Высокой эластичностью резины объясняются и другие важные свойства резинометаллических опор, в частно-сти, слабая чувствительность к небольшим дефектам, допущенным при изго-товлении и сборке опорного узла, а также амортизационные свойства. Основ-ным объектом исследований в области опор турбобура является его пята - наиболее тяжело нагруженный узел всей конструкции.
Ступень пяты турбобура (рисунок ) состоит из обрезиненного подпят-ника 2, соединенного с корпусом турбобура, металлического диска 1 и кольца пяты 3, вращающихся вместе с валом 4.
Осевые нагрузки через одну из сторон диска передаются на соответству-ющую торцовую резиновую пяты. Поперечные нагрузки, действующие на верхнюю часть вала, воспринимаются кольцами пяты, которые опираются на внутренюю радиальную поверхность подпятника.
Изнашивание деталей пяты турбобура – подпятников, дисков и распор-ных колец – вызвано воздействием на них абразива, содержащегося в буровой жидкости, а также вибрационным и ударным характером нагрузок. Вредное влияние на резину этих факторов усиливается в условиях повышенных забой-ных температур, снижающих прочность резины. Действие абразива становится более интенсивным при вибрации поверхностей трения.
Износ дисков пяты.
Характер износа дисков пяты зависит как от технического состояния дру-гих деталей и узлов турбобура, так и от таких факторов, как кривизна ствола скважин, режим бурения, тип и качество промывочной жидкости, конструкция низа бурильной колонны, производительность буровых насосов и др.
Осевой износ дисков может быть одно- и двусторонним. В случае преоб-ладания на долоте нагрузки от гидравлического перепада давления в турбобу-ре и долоте диск пяты изнашивается только снизу, а для других условий нагружения – с двух сторон. Для Западной Сибири характерен односторонний износ дисков пяты.
В процессе проработки ствола скважины и в начальный период работы долота на забое, соответствующей стадии приложения к нему относительно ма-лых осевых нагрузок, имеет место односторонний износ дисков пяты. В после-дующем, по мере увеличения осевой нагрузки на долото, диск пяты будет под-вергаться износу и с другой стороны, как только изменится направление дей-ствующей на него осевой нагрузки. Следовательно, установив, с какой стороны изношен диск пяты, можно определить преобладающее направление действия нагрузки, передаваемой диском пяты подпятником или наоборот – подпятни-ком диску пяты. Следует отметить, что возможен некоторый износ и верхней стороны пяты вследствие периодического контакта соударений последнего с подпятником из-за осевой вибрации бурильного инструмента, обусловленного динамикой работы шарошечного долота на забое скважины. Величина осевого износа стороны диска пяты, соударяющегося с подпятником из-за вибрации забойного инструмента, как правило, принимает наибольшие значения для крайних дисков в комплекте пяты, контактирующих с первыми и последними с самыми нижними и самыми верхними) подпятниками.
Износ подпятников.
В подпятнике подвержены износу и разрушению резиновая обкладка, а износу и деформации – стальной остов по внутреннему диаметру.
Подпятники подвергаются сильному эрозионному воздействию потоком промывочной жидкости, протекающей через их промывочные каналы и окна. Нередко в месте расположения промывочных каналов поток промывочной жидкости вызывает отрыв резины от металлического остова подпятника со всеми вытекающими отсюда последствиями. Наиболее сильно эрозии подвер-гаются проточные пяты, устанавливаемые в турбинные секции.
В качестве повышения износостойкости и к.п.д. пяты турбобура предло-жены: подбор новых материалов для элементов трения пяты; защита пяты тур-бобура от попадания абразивных частиц; применение «плавающей» пяты; ослабление вредного влияния динамических нагрузок; упрочнение поверхно-стей трения и улучшение качества резины и т.д.
Похожие материалы
Модернизированный турбобур ЗТСШ1-195-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 25 мая 2016
Модернизированный турбобур ЗТСШ1-195-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
500 руб.
Секция шпиндельная турбобура ЗТСШ1-172-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 10 июня 2016
Секция шпиндельная турбобура ЗТСШ1-172-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
400 руб.
Турбобур ЗТСШ1-172 Вид общий-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 10 июня 2016
Турбобур ЗТСШ1-172 Вид общий-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
500 руб.
Секция турбинная турбобура ЗТСШ1-172-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
https://vk.com/aleksey.nakonechnyy27
: 10 июня 2016
Секция турбинная турбобура ЗТСШ1-172-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа-Дипломная работа
297 руб.
Усовершенствование турбобура ЗТСШ1-172 путем использования сбалансированной роторной сборки-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа
lesha.nakonechnyy.92@mail.ru
: 19 декабря 2018
Усовершенствование турбобура ЗТСШ1-172 путем использования сбалансированной роторной сборки-Текст пояснительной записки выполнен на Украинском языке вы можете легко его перевести на русский язык через Яндекс Переводчик ссылка на него https://translate.yandex.ru/?lang=uk-ru или с помощью любой другой программы для перевода-Оборудование для бурения нефтяных и газовых скважин-Курсовая работа
Усовершенствование турбобура ЗТСШ1 путем использования сбалансированной роторной зборки
СОДЕРЖАНИЕ
ВСТУПЛЕН
1293 руб.
Комплексная модернизация турбобуров 3ТСШ1-195 и ТРМ-195-Курсовая работа-Оборудование для бурения нефтяных и газовых скважин
lesha.nakonechnyy.92@mail.ru
: 9 августа 2016
Комплексная модернизация турбобуров 3ТСШ1-195 и ТРМ-195-Курсовая работа-Оборудование для бурения нефтяных и газовых скважин
В данном дипломном проекте предложена комплексная модернизация турбобуров 3ТСШ1-195 и ТРМ-195.
Цель модернизации: 1) обеспечение работы с низкооборотными и среднеоборотными шарошечными долотами; 2) обеспечение работы с низко-оборотными и среднеоборотными алмазными долотами; 3) переход на низ-колитражный режим бурения.
Ожидаемый эффект от модернизации достигается за счет:
1843 руб.
ТУРБОБУР ТПВ 195 С ПЛАВАЮЩИМ ВАЛОМ-Курсовая работа-Оборудование для бурения нефтяных и газовых скважин
lesha.nakonechnyy.92@mail.ru
: 14 февраля 2018
ТУРБОБУР ТПВ 195 С ПЛАВАЮЩИМ ВАЛОМ-Курсовая работа-Оборудование для бурения нефтяных и газовых скважин
2 Устройство и принцип работы
2.1 Устройство турбобура
Турбобур ТПВ-195, состоит из турбинной и шпиндельной секций. Верхним переводником турбобур соединяется с бурильными трубами, а к переводнику вала шпинделя присоединяется долото. Бурильные трубы и долото соединяются с турбобуром посредством замковых резьб. Рабочий орган турбобура многоступенчатая турбина осевого типа преобразует энергию по
1087 руб.
Усовершенствование турбобура ЗТСШ1-172 путем использования сбалансированной роторной сборки-Дипломная работа-Оборудование для бурения нефтяных и газовых скважин
lesha.nakonechnyy.92@mail.ru
: 21 июня 2018
Усовершенствование турбобура ЗТСШ1-172 путем использования сбалансированной роторной сборки-Текст пояснительной записки выполнен на Украинском языке вы можете легко его перевести на русский язык через Яндекс Переводчик ссылка на него https://translate.yandex.ru/?lang=uk-ru или с помощью любой другой программы для перевода-Дипломная работа-Оборудование для бурения нефтяных и газовых скважин
4 ОПИСАНИЕ ТЕХНИЧЕСКОГО ПРЕДЛОЖЕНИЯ
4.1 Турбобур с відбалансованою роторной сборкой
Известны различные тип
2584 руб.
Другие работы
ФМРМ.ХХХХХХ.800 ВО Вилка
vermux1
: 7 сентября 2018
Вилка входит в состав устройства разъема и предназначена для соединения и разъединения электрической цепи.
Соединение осуществляется при помощи цангового зажима корпуса 1 и кольца 2, которые фиксируют другой контакт электрической цепи.
ФМРМ.ХХХХХХ.800 ВО СБ_Вилка
ФМРМ.ХХХХХХ.800 ВО СП_Вилка
ФМРМ.ХХХХХХ.801_Корпус
ФМРМ.ХХХХХХ.802_Кольцо
ФМРМ.ХХХХХХ.803_Штырь
ФМРМ.ХХХХХХ.804_Изолятор
ФМРМ.ХХХХХХ.805_Изолятор
ФМРМ.ХХХХХХ.806_Втулка
ФМРМ.ХХХХХХ.807_Втулка
ФМРМ.ХХХХХХ.808_Гайка
Выполнены в компасе
600 руб.
Гидравлика и нефтегазовая гидромеханика Хабаровск ТОГУ Задача 1 Вариант 3
Z24
: 26 ноября 2025
К цилиндру подключен двух жидкостной ртутно-водяной манометр и технический пружинный манометр (рис.1). Определить показания технического манометра рм, если известны: h1, h2, h3, h4 и H.
150 руб.
Решения задач по Кузнецову. Векторный анализ (Издание 2011 г.)
Aronitue9
: 25 декабря 2011
270 стр.
Приведены типовые расчёты из раздела Векторный анализ. По указанному разделу освещены теоретические вопросы:
Скалярное поле. Производная по направлению.
Градиент, его свойства. Инвариантное определение градиента.
Векторное поле. Поток векторного поля через поверхность, его физический смысл.
Формула Остроградского.
Дивергенция векторного поля, ее физический смысл. Инвариантное определение дивергенции. Свойства дивергенции.
Соленоидальное поле, его основные свойства.
Линейный интеграл в в
Контрольная работа, Вариант 1, 11, 21 и т.д., Методы и средства измерений в телекоммуникационных системах
linok1910
: 24 февраля 2016
Часть 1. ОБЪЕКТИВНЫЕ ОЦЕНКИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ КОЭФФИЦИЕНТА ОШИБОК
Задание:
При анализе цифровой системы передачи со скоростью В было получено в течение времени ТNош ошибок. По результатам анализа вычислить следующие статистические параметры:
· оценку коэффициента ошибок Кош;
· среднее квадратическое значение s (У абсолютной погрешности оценки коэффициента ошибок Кош
· относительное значение погрешности d и при заданной доверительной вероятности Рдов=0,95 и коэффициенте Стьюдента tр =1,2;
50 руб.