Теория вероятностей и математическая статистика. Контрольная работа. Вариант №1.
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1.Пять человек рассаживаются на скамейке в случайном порядке. Среди них есть два брата. Найти вероятность того, что братья займут крайние места.
2.В команде 12 спортсменов. Из них первые четверо выполняют упражнение на «отлично» с вероятностью 0,8, трое других – с вероятностью 0,6, а остальные – с вероятностью 0,2. Случайно выбранный спортсмен из этой группы выполнил упражнение на «отлично». Какова вероятность, что он из первой четверки?
3.В оперативную часть поступает в среднем одно сообщение в минуту. Найти вероятность того, что за 2 минуты поступит: а) 3 сообщения; б) менее двух сообщений.
4. Случайная величина X задана функцией распределения (интегральной функцией) F(x):
Требуется: а) найти дифференциальную функцию (плотность распределения вероятностей); б) найти математическое ожидание и дисперсию случайной величины; в) построить графики интегральной и дифференциальной функций.
5.Известны математическое ожидание a = 8 и среднее квадратичное отклонение = 4 нормально распределенной случайной величины X. Найти вероятность попадания этой величины в заданный интервал (6;10).
2.В команде 12 спортсменов. Из них первые четверо выполняют упражнение на «отлично» с вероятностью 0,8, трое других – с вероятностью 0,6, а остальные – с вероятностью 0,2. Случайно выбранный спортсмен из этой группы выполнил упражнение на «отлично». Какова вероятность, что он из первой четверки?
3.В оперативную часть поступает в среднем одно сообщение в минуту. Найти вероятность того, что за 2 минуты поступит: а) 3 сообщения; б) менее двух сообщений.
4. Случайная величина X задана функцией распределения (интегральной функцией) F(x):
Требуется: а) найти дифференциальную функцию (плотность распределения вероятностей); б) найти математическое ожидание и дисперсию случайной величины; в) построить графики интегральной и дифференциальной функций.
5.Известны математическое ожидание a = 8 и среднее квадратичное отклонение = 4 нормально распределенной случайной величины X. Найти вероятность попадания этой величины в заданный интервал (6;10).
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Теория вероятностей и математическая статистика
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 02.03.2016
Рецензия:Уважаемый ***,
Ваша работа зачтена.
Агульник Владимир Игоревич
Оценена Ваша работа по предмету: Теория вероятностей и математическая статистика
Вид работы: Контрольная работа 1
Оценка:Зачет
Дата оценки: 02.03.2016
Рецензия:Уважаемый ***,
Ваша работа зачтена.
Агульник Владимир Игоревич
Похожие материалы
Теория вероятностей и математическая статистика. Контрольная работа. Вариант 1.
motilda
: 21 февраля 2025
Задание 1 . Комбинаторика.
Внимание! Под "словом" подразумивается любой набор букв, не обязательно осмысленный.
Сколько 4-х буквенных слов можно составить из букв слова К А Р П? Под «словом» подразумевается любой набор букв, не обязательно осмысленный.
Задание 2. Основные теоремы
Спортсмен попадает в основной состав команды с вероятностью 0,6, а в запас - с вероятностью 0,4. Спортсмен из основного состава команды участвует в соревновании с вероятностью 0,9, из запаса - с вероятностью 0,2. Най
350 руб.
Теория вероятностей и математическая статистика. Контрольная работа. Вариант №1
Кот Леопольд
: 31 января 2021
Контрольная работа "Теория вероятностей и математическая статистика" Вариант №1
Задание 1
Сколько 4-х буквенных слов можно составить из букв слова КАРП ?
Задание 2
Спортсмен попадает в основной состав команды с вероятностью 0,6, а в запас - с вероятностью 0,4. Спортсмен из основного состава команды участвует в соревновании с вероятностью 0,9, из запаса - с вероятностью 0,2. Найти вероятность участия в соревновании произвольно выбранного спортсмена.
Задание 3
Найти математическое ожидание, дис
100 руб.
Теория вероятностей и математическая статистика. Контрольная работа. Вариант 1.
VasgenXII
: 25 октября 2019
1. Пять человек рассаживаются на скамейке в случайном порядке. Среди них есть два брата. Найти вероятность того, что братья займут крайние места.
2. В команде 12 спортсменов. Из них первые четверо выполняют упражнение на «отлично» с вероятностью 0,8, трое других – с вероятностью 0,6, а остальные – с вероятностью 0,2. Случайно выбранный спортсмен из этой группы выполнил упражнение на «отлично». Какова вероятность, что он из первой четверки?
3. В оперативную часть поступает в среднем одно сообще
300 руб.
Теория вероятностей и математическая статистика. Контрольная работа. Вариант №1
Gila
: 17 января 2019
1. Пять человек рассаживаются на скамейке в случайном порядке. Среди них есть два брата. Найти вероятность того, что братья займут крайние места.
2. В команде 12 спортсменов. Из них первые четверо выполняют упражнение на «отлично» с вероятностью 0,8, трое других – с вероятностью 0,6, а остальные – с вероятностью 0,2. Случайно выбранный спортсмен из этой группы выполнил упражнение на «отлично». Какова вероятность, что он из первой четверки?
3. В оперативную часть поступает в среднем одно сообще
200 руб.
Контрольная работа теория вероятности и математическая статистика Вариант №1
sxesxe
: 6 декабря 2016
1. Пять человек рассаживаются на скамейке в случайном порядке. Среди них есть два брата. Найти вероятность того, что братья займут крайние места.
2. В команде 12 спортсменов. Из них первые четверо выполняют упражнение на «отлично» с вероятностью 0,8, трое других – с вероятностью 0,6, а остальные – с вероятностью 0,2. Случайно выбранный спортсмен из этой группы выполнил упражнение на «отлично». Какова вероятность, что он из первой четверки?
3. В оперативную часть поступает в среднем одн
100 руб.
Контрольная работа по теории вероятности и математической статистике. Вариант №1
SibGutluky
: 5 октября 2016
Контрольная работа, вариант №1
1. Пять человек рассаживаются на скамейке в случайном порядке. Среди них есть два брата. Найти вероятность того, что братья займут крайние места.
2. В команде 12 спортсменов. Из них первые четверо выполняют упражнение на «отлично» с вероятностью 0,8, трое других – с вероятностью 0,6, а остальные – с вероятностью 0,2. Случайно выбранный спортсмен из этой группы выполнил упражнение на «отлично». Какова вероятность, что он из первой четверки?
3. В опе
Теория вероятностей и математическая статистика. Контрольная работа. Вариант №1
sanmix10077
: 30 января 2016
1. Пять человек рассаживаются на скамейке в случайном порядке. Среди них есть два брата. Найти вероятность того, что братья займут крайние места.
2. В команде 12 спортсменов. Из них первые четверо выполняют упражнение на «отлично» с вероятностью 0,8, трое других – с вероятностью 0,6, а остальные – с вероятностью 0,2. Случайно выбранный спортсмен из этой группы выполнил упражнение на «отлично». Какова вероятность, что он из первой четверки?
3. В оперативную часть поступает в среднем одно сообщен
200 руб.
Теория вероятности и математическая статистика. Контрольная работа. Вариант №1.
Art55555
: 16 октября 2014
10.1. В каждой из двух урн содержится 6 черных и 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным. 11.1. Среднее число вызовов, поступающих на АТС в 1 мин, равно четырём. Найти вероятность того, что за 2 мин поступит: а) 6 вызовов; б) менее шести вызовов; в) не менее шести вызовов. Предполагается, что поток вызовов – простейший. 12.1 Найти: а) математическое ожидание; б) дисперсию; в) средне
50 руб.
Другие работы
Лабораторная работа №4 по дисциплине «Сети связи и системы коммутации» “Поиск пути в двухзвенном коммутационном поле” Вариант 05
DaemonMag
: 8 сентября 2011
Цель работы
1.1. Изучение принципов поиска пути в автоматических системах коммутации (АСК) с программным управлением.
1.2. Изучение состава данных, используемых программой поиска пути.
1.3. Изучение принципа организации поиска пути в 2-хзвеном КП.
1.3. Моделирование с помощью персональной ЭВМ процесса поиска пути в КП.
Коммутационное поле (КП) автоматических телефонных станций любого типа, предназначено для осуществления процесса поиска соединительного пути и коммутации входа и выхода ступени и
50 руб.
Управление и структура внешнего долга России
evelin
: 25 октября 2013
Глава 1. Теоретические основы управления государственным внешним долгом …………………………………………………………………………
1.1 Сущность и структура государственного внешнего долга РФ ………..
1.2 Основы управления государственным внешним долгом РФ…..………
Глава 2 Анализ практики управления государственным внешним долгом России………………………………………………………………………....
2.1 Динамика государственного внешнего долга РФ………………………
2.2 Обслуживание и урегулирование внешнего долга России…………….
Глава 3 перспективы развития системы управ
5 руб.
Механизм передвижения тележки-Чертеж-Графическая часть-Оборудование-Машины и механизмы-Агрегаты-Установки-Комплексы-Узлы-Детали-Курсовая работа-Дипломная работа
as.nakonechnyy.92@mail.ru
: 4 июля 2017
Механизм передвижения тележки-(Формат Компас-CDW, Autocad-DWG, Adobe-PDF, Picture-Jpeg)-Чертеж-Графическая часть-Оборудование-Машины и механизмы-Агрегаты-Установки-Комплексы-Узлы-Детали-Курсовая работа-Дипломная работа
485 руб.
Построение сети. Концентраторы. Коммутаторы
ostah
: 18 сентября 2012
Протокол ARP (address resolution protocol, RFC-826) — преобразует IP в Ethernet адреса.
Для определения локального адреса по IP-адресу используется протокол разрешения адреса Address Resolution Protocol, ARP. Протокол ARP работает различным образом в зависимости от того, какой протокол канального уровня работает в данной сети - протокол локальной сети (Ethernet, Token Ring, FDDI) с возможностью широковещательного доступа одновременно ко всем узлам сети, или же протокол глобальной сети (X.25, fr
50 руб.