Специальные главы математики. Контрольная работа. Вариант 14. СибГути. Заочно ускоренное обучение
Состав работы
|
|
|
|
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Задача 1
1. Векторное поле задано двумя составляющими: A(вектор)= Er(вектор)*rsin(0) + Eф(вектор)*r^2 cos(ф) Определить дивергенцию этого поля.
Задача 2
4. Решить вторую граничную задачу для уравнения Гельмгольца в двумерной области:
1. Векторное поле задано двумя составляющими: A(вектор)= Er(вектор)*rsin(0) + Eф(вектор)*r^2 cos(ф) Определить дивергенцию этого поля.
Задача 2
4. Решить вторую граничную задачу для уравнения Гельмгольца в двумерной области:
Дополнительная информация
Работа получила оценку зачет. Если вас интересуют другие работы, то вы можете посмотреть их нажав "Посмотреть другие работы этого продавца".
Похожие материалы
Специальные главы математики. Контрольная работа. Вариант №2. СибГути. Заочно ускоренное обучение
TheMrAlexey
: 21 мая 2016
Задача 1
0. Скалярное поле Ф задано в цилиндрической системе координат функцией Ф=5 rcos(ф)- 3zsin(ф).
Вычислить векторное поле grad(ф).
Задача 2
2. Найти решение внешней граничной задачи Дирихле в области r≥R при граничном условии u(R,ф) = cos(ф).
50 руб.
Специальные главы математики. Контрольная работа. Вариант 00. СибГути. Заочно ускоренное обучение
TheMrAlexey
: 21 мая 2016
Задача 1
0. Скалярное поле Ф задано в цилиндрической системе координат функцией Ф=5 rcos(ф)- 3zsin(ф).
Вычислить векторное поле grad(ф).
Задача 2
0. Найти решение внутренней граничной задачи Дирихле в области 0≤r≤R при граничном условии u(R,ф) = 0.
50 руб.
Специальные главы математики. Контрольная работа. Вариант 09. СибГути. Заочно ускоренное обучение
TheMrAlexey
: 21 мая 2016
Задача 1
0. Скалярное поле Ф задано в цилиндрической системе координат функцией Ф=5 rcos(ф)- 3zsin(ф).
Вычислить векторное поле grad(ф).
Задача 2
9. Найти решение первой внутренней граничной задачи для уравнения Гельмгольца в двумерной цилиндрической области R1≤r≤R2;0≤ф<2п при граничных условиях: u(R1,ф) = 0; u(R2,ф) = 0.
50 руб.
Специальные главы математики. Контрольная работа. Вариант 04. СибГути. Заочно ускоренное обучение
TheMrAlexey
: 21 мая 2016
Задача 1
0. Скалярное поле Ф задано в цилиндрической системе координат функцией Ф=5 rcos(ф)- 3zsin(ф).
Вычислить векторное поле grad(ф).
Задача 2
4. Решить вторую граничную задачу для уравнения Гельмгольца в двумерной области:
50 руб.
Специальные главы математики. Контрольная работа. Вариант 06. СибГути. Заочно ускоренное обучение
TheMrAlexey
: 21 мая 2016
Задача 1
0. Скалярное поле Ф задано в цилиндрической системе координат функцией Ф=5 rcos(ф)- 3zsin(ф).
Вычислить векторное поле grad(ф).
Задача 2
6. Решить вторую граничную задачу для уравнения Гельмгольца в трёхмерной области:
50 руб.
Специальные главы математики. Контрольная работа. Вариант 07. СибГути. Заочно ускоренное обучение
TheMrAlexey
: 21 мая 2016
Задача 1
0. Скалярное поле Ф задано в цилиндрической системе координат функцией Ф=5 rcos(ф)- 3zsin(ф).
Вычислить векторное поле grad(ф).
Задача 2
7. Найти решение первой внутренней граничной задачи для уравнения Гельмгольца в двумерной цилиндрической области 0≤r<R;0≤ф<2п при граничных условиях: u(R,ф) = 0.
50 руб.
Специальные главы математики. Контрольная работа. Вариант 44. СибГути. Заочно ускоренное обучение
TheMrAlexey
: 21 мая 2016
Задача 1
4. Скалярное поле Ф задано функцией Ф = 3x^2ycos(z) + 2z^2. Найти векторное поле grad(ф).
Задача 2
4. Решить вторую граничную задачу для уравнения Гельмгольца в двумерной области:
50 руб.
Специальные главы математики. Контрольная работа. Вариант 34. СибГути. Заочно ускоренное обучение
TheMrAlexey
: 21 мая 2016
Задача 1
3. Определить дивергенцию векторного поля A, заданного составляющими: Ar = 6/r^3, Aф = 4sin^2ф, Az = 0.
Задача 2
4. Решить вторую граничную задачу для уравнения Гельмгольца в двумерной области:
50 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.