Расчетно-пояснительная записка-Расчет и модернизация узла абсорбции-Дипломная работа-Оборудование для добычи и подготовки нефти и газа-Нефтегазовая промышленность
Состав работы
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
- Adobe Acrobat Reader
Описание
Расчетно-пояснительная записка-Расчет и модернизация узла абсорбции-Дипломная работа-Оборудование для добычи и подготовки нефти и газа-Нефтегазовая промышленность
Выпускная квалификационная работа содержит: 131 с., 16 рис., 16 табл., 14 источников., 4 прил.
Ключевые слова: абсорбер, осушка, диэтиленгликоль.
Объектом исследования является узел абсорбции газа.
Предметом исследования является основной аппарат - абсорбер.
Цель работы – модернизация массообменной части абсорбера.
В процессе исследования производился анализ УКПГ Ямбургского месторождения с целью повышения производительности.
В результате исследования была проведена модернизация и расчет абсорбера.
Основные конструктивные, технологические и технико – эксплуатационные характеристики: производительность, степень осушки, унос гликоля.
Степень внедрения: внедрение на УКПГ Ямбургского месторождения.
Область применения: осушка газа по ГОСТ 16350-80
Экономическая эффективность/значимость работы данная работа имеет важное значение, так как позволит добывать большие объемы газа.
В будущем планируется установка данных абсорберов на различные месторождения.
Наиболее эффективный путь направления повышения эффективности массообменного оборудования – создание новых тарельчатых или насадочных массообменных устройств с повышенным КПД, малым гидравлическим сопротивлением и минимальным уносом жидкости с газом. При этом основным направлением совершенствования является использование принципа совмещения функций массообмена между газом и жидкостью с одновременной сепарацией жидкости от газа после контакта и равномерное распределение газового и жидкостного потока по сечению тарелки, а так же организованный отвод жидкости, исключающий повторный унос газом.
Базовым образцом для совершенствования являлось контактное устройство - колпачковая тарелка. Основные недостатки - это низкая эффективность, высокие металлоемкость и трудоемкость изготовления, ограниченность скорости газа из-за уноса жидкости с полотна тарелки.
Поэтому указанные контактные устройства были постепенно вытеснены более совершенными - комбинированными тарелками: ситчатыми в сочетании с сепарационными прямоточно-центробежными контактными устройствами, где на ситчатых тарелках происходит диспергирование жидкости, а на центробежных элементах - сепарация и дополнительный контакт газа с жидкостью.
Комбинированные контактные устройства, в свою очередь, уступили место прямоточным контактно-сепарационным устройствам. Основные преимущества указанных устройств - это допустимые высокие скорости газа (факторы скорости до 5 по сечению аппарата и до 24 в контактных элементах) и повышение их эффективности с увеличением расхода (скорости) газа, так как при этом уменьшается диаметр капель жидкости и уве-личивается поверхность контакта [3].
Недостатком этих устройств является ограничение диапазона эффективной работы (отношение Wmax/Wmin) в пределах 3.
Для массообменного оборудования с диапазоном работ более трех были разработаны контактные устройства насадочного типа - регулярные насадки пластинчатого типа, на которых размещены объемные жгуты (навивка) для направления потоков газа и жидкости (патент РФ No 2113900), делящие объем аппарата на макро- и микроструктуры. Основной недостаток последних - повышенная стоимость изготовления по сравнению с контактными прямоточно-центробежными устройствами, основное преимущество - это расширенный диапазон эффективной работы и малый унос жидкости с газом при малых гидравлических сопротивлениях по газу за счет большого свободного объема. Рассмотренные выше устройства имеют свои области применения. Ниже приводится схема усовершенствования конструкций контактных устройств массообменных аппаратов.
Как видно на рисунке 1.3, контактные устройства массообменного аппарата можно разделить на: тарельчатые - барботажные и с прямоточно-центробежными элементами; насадочные (с организованным подводом газа и жидкости).
Совершенствование колонн с барботажными тарелками (колпачковыми, ситчатыми и т.д. ) направленно на: повышение эффективности (КПД) за счет установки в сепарационных зонах между тарелками дополнительных насадок: сетчатых объемных или регулярных пластинчатых, применения комбинированных контактных устройств, ситчато-насадочных или двухслойных ситчатых; повышение производительности по газу или сохранение производительности при падающем давлении процесса за счет частичного байпасирования газовых потоков, снижения гидравлического сопротивления и установки на выходе из колонн дополнительных фильтр-патронов, исключающих увеличение уноса жидкости (абсорбента) с газом.
Совершенствование колонн с прямоточно-центробежными массообменными элементами направленно на расширение области их применения за счет создания контактных элементов, работающих в диапазоне отношения жидкости к газу от 0,01 до 1 кг/кг и более для нисходящих потоков, а так же за счет применения тарелок с автоматическим регулированием расхода жидкости в прямоточно-центробежные элементы в зависимости от изменения подачи жидкости в аппарат.
Совершенствование насадочных устройств направленно на создание регулярных насадок для использования их для разделения загрязненных потоков жидкости – самоочищающихся насадок, а так же насадок с большей удельной поверхностью – до 3000 м2/м3 для процессов ректификации.
Рисунок 1.3 – Схема усовершенствования конструкций контактных устройств массообменных аппаратов
Ниже, на рисунках 1.4 – 1.7 приведены высокопроизводительные конструкции современных серийных и новых абсорберов осушки газа, в которых достигнуты факторы скорости газа по сечению аппаратов, равные 5 – 6, унос абсорбента с осушенным газом 0,4 – 5,0 г/1000 м3 при выносе жидкости на фильтрующую секцию в 2 – 10 раз ниже, чем в серийных аппаратах.
Так, на рисунке 1.4 представлен абсорбер осушки газа диаметром 1,8 м с серийными прямоточно-центробежными массообменными элементами, который применяется на ряде УКПГ Ямбургского месторождения.
На рисунке 1.5 показан абсорбер осушки газа с серийными прямоточно-центробежными массообменными элементами и газораспределительной секцией
установленной над верхней контактной тарелкой. Данная конструкция абсорбера испытана на Западно-Таркосалинском ГКМ. Примененное техническое решение позволило при производительности аппарата по газу 10,2 млн. м3/сут (Р = 7,81 Мпа) снизить потери гликоля с осушенным газом с 15 до 0,4 – 1,3 г/1000 м3.
На рисунке 1.6 приведен абсорбер осушки газа с комбинированными контактными устройствами, представляющими собой сочетание тарелок с прямоточно-центробежными элементами и патрубками для байпасирования части газового потока, в межтарельчатом пространстве которых установлены пакеты регулярной пластинчатой насадки; над верхней контактной тарелкой размещена газораспределительная секция. Аппарат успешно эксплуатируется на Степановской СПХГ при следующих показателях: Р = 4,5 – 4,8 Мпа; tr от минут 3 до +5 oС; Qr = 8,5 – 9,0 млн. м3/сут; унос жидкости из аппарата 4 г/1000 м3; вынос гликоля на фильтр-патроны – 30 г/1000 м3 газа, что значительно превышает показатели данного абсорбера до модернизации.
На рисунке 1.7 представлен абсорбер осушки газа с регулярной пластинчатой насадкой и размещенной над ней газораспределительной секцией.
Данный аппарат применили на установке осушки газа Комсомольского газоконденсатного месторождения. По результатам проведенных сравнительных испытаний по своим техническим параметрам: производительности (Qг =10,8 млн. м3/сут. при Р = 6,3 МПа), температуре точки росы газа по влаге (минус 20 °С), уносу гликоля из аппарата (0,03-0,4 г/1000 м3 газа) он не уступает абсорберу с насадкой фирмы «Sulzer» закупленной по импорту, а по выносу абсорбента на фильтрующую секцию даже превосходит зарубежный образец (0,28-0,32 г/1000 м3 газа против 0,25-1,0 г/1000 м3 у зарубежного аналога).
Выпускная квалификационная работа содержит: 131 с., 16 рис., 16 табл., 14 источников., 4 прил.
Ключевые слова: абсорбер, осушка, диэтиленгликоль.
Объектом исследования является узел абсорбции газа.
Предметом исследования является основной аппарат - абсорбер.
Цель работы – модернизация массообменной части абсорбера.
В процессе исследования производился анализ УКПГ Ямбургского месторождения с целью повышения производительности.
В результате исследования была проведена модернизация и расчет абсорбера.
Основные конструктивные, технологические и технико – эксплуатационные характеристики: производительность, степень осушки, унос гликоля.
Степень внедрения: внедрение на УКПГ Ямбургского месторождения.
Область применения: осушка газа по ГОСТ 16350-80
Экономическая эффективность/значимость работы данная работа имеет важное значение, так как позволит добывать большие объемы газа.
В будущем планируется установка данных абсорберов на различные месторождения.
Наиболее эффективный путь направления повышения эффективности массообменного оборудования – создание новых тарельчатых или насадочных массообменных устройств с повышенным КПД, малым гидравлическим сопротивлением и минимальным уносом жидкости с газом. При этом основным направлением совершенствования является использование принципа совмещения функций массообмена между газом и жидкостью с одновременной сепарацией жидкости от газа после контакта и равномерное распределение газового и жидкостного потока по сечению тарелки, а так же организованный отвод жидкости, исключающий повторный унос газом.
Базовым образцом для совершенствования являлось контактное устройство - колпачковая тарелка. Основные недостатки - это низкая эффективность, высокие металлоемкость и трудоемкость изготовления, ограниченность скорости газа из-за уноса жидкости с полотна тарелки.
Поэтому указанные контактные устройства были постепенно вытеснены более совершенными - комбинированными тарелками: ситчатыми в сочетании с сепарационными прямоточно-центробежными контактными устройствами, где на ситчатых тарелках происходит диспергирование жидкости, а на центробежных элементах - сепарация и дополнительный контакт газа с жидкостью.
Комбинированные контактные устройства, в свою очередь, уступили место прямоточным контактно-сепарационным устройствам. Основные преимущества указанных устройств - это допустимые высокие скорости газа (факторы скорости до 5 по сечению аппарата и до 24 в контактных элементах) и повышение их эффективности с увеличением расхода (скорости) газа, так как при этом уменьшается диаметр капель жидкости и уве-личивается поверхность контакта [3].
Недостатком этих устройств является ограничение диапазона эффективной работы (отношение Wmax/Wmin) в пределах 3.
Для массообменного оборудования с диапазоном работ более трех были разработаны контактные устройства насадочного типа - регулярные насадки пластинчатого типа, на которых размещены объемные жгуты (навивка) для направления потоков газа и жидкости (патент РФ No 2113900), делящие объем аппарата на макро- и микроструктуры. Основной недостаток последних - повышенная стоимость изготовления по сравнению с контактными прямоточно-центробежными устройствами, основное преимущество - это расширенный диапазон эффективной работы и малый унос жидкости с газом при малых гидравлических сопротивлениях по газу за счет большого свободного объема. Рассмотренные выше устройства имеют свои области применения. Ниже приводится схема усовершенствования конструкций контактных устройств массообменных аппаратов.
Как видно на рисунке 1.3, контактные устройства массообменного аппарата можно разделить на: тарельчатые - барботажные и с прямоточно-центробежными элементами; насадочные (с организованным подводом газа и жидкости).
Совершенствование колонн с барботажными тарелками (колпачковыми, ситчатыми и т.д. ) направленно на: повышение эффективности (КПД) за счет установки в сепарационных зонах между тарелками дополнительных насадок: сетчатых объемных или регулярных пластинчатых, применения комбинированных контактных устройств, ситчато-насадочных или двухслойных ситчатых; повышение производительности по газу или сохранение производительности при падающем давлении процесса за счет частичного байпасирования газовых потоков, снижения гидравлического сопротивления и установки на выходе из колонн дополнительных фильтр-патронов, исключающих увеличение уноса жидкости (абсорбента) с газом.
Совершенствование колонн с прямоточно-центробежными массообменными элементами направленно на расширение области их применения за счет создания контактных элементов, работающих в диапазоне отношения жидкости к газу от 0,01 до 1 кг/кг и более для нисходящих потоков, а так же за счет применения тарелок с автоматическим регулированием расхода жидкости в прямоточно-центробежные элементы в зависимости от изменения подачи жидкости в аппарат.
Совершенствование насадочных устройств направленно на создание регулярных насадок для использования их для разделения загрязненных потоков жидкости – самоочищающихся насадок, а так же насадок с большей удельной поверхностью – до 3000 м2/м3 для процессов ректификации.
Рисунок 1.3 – Схема усовершенствования конструкций контактных устройств массообменных аппаратов
Ниже, на рисунках 1.4 – 1.7 приведены высокопроизводительные конструкции современных серийных и новых абсорберов осушки газа, в которых достигнуты факторы скорости газа по сечению аппаратов, равные 5 – 6, унос абсорбента с осушенным газом 0,4 – 5,0 г/1000 м3 при выносе жидкости на фильтрующую секцию в 2 – 10 раз ниже, чем в серийных аппаратах.
Так, на рисунке 1.4 представлен абсорбер осушки газа диаметром 1,8 м с серийными прямоточно-центробежными массообменными элементами, который применяется на ряде УКПГ Ямбургского месторождения.
На рисунке 1.5 показан абсорбер осушки газа с серийными прямоточно-центробежными массообменными элементами и газораспределительной секцией
установленной над верхней контактной тарелкой. Данная конструкция абсорбера испытана на Западно-Таркосалинском ГКМ. Примененное техническое решение позволило при производительности аппарата по газу 10,2 млн. м3/сут (Р = 7,81 Мпа) снизить потери гликоля с осушенным газом с 15 до 0,4 – 1,3 г/1000 м3.
На рисунке 1.6 приведен абсорбер осушки газа с комбинированными контактными устройствами, представляющими собой сочетание тарелок с прямоточно-центробежными элементами и патрубками для байпасирования части газового потока, в межтарельчатом пространстве которых установлены пакеты регулярной пластинчатой насадки; над верхней контактной тарелкой размещена газораспределительная секция. Аппарат успешно эксплуатируется на Степановской СПХГ при следующих показателях: Р = 4,5 – 4,8 Мпа; tr от минут 3 до +5 oС; Qr = 8,5 – 9,0 млн. м3/сут; унос жидкости из аппарата 4 г/1000 м3; вынос гликоля на фильтр-патроны – 30 г/1000 м3 газа, что значительно превышает показатели данного абсорбера до модернизации.
На рисунке 1.7 представлен абсорбер осушки газа с регулярной пластинчатой насадкой и размещенной над ней газораспределительной секцией.
Данный аппарат применили на установке осушки газа Комсомольского газоконденсатного месторождения. По результатам проведенных сравнительных испытаний по своим техническим параметрам: производительности (Qг =10,8 млн. м3/сут. при Р = 6,3 МПа), температуре точки росы газа по влаге (минус 20 °С), уносу гликоля из аппарата (0,03-0,4 г/1000 м3 газа) он не уступает абсорберу с насадкой фирмы «Sulzer» закупленной по импорту, а по выносу абсорбента на фильтрующую секцию даже превосходит зарубежный образец (0,28-0,32 г/1000 м3 газа против 0,25-1,0 г/1000 м3 у зарубежного аналога).
Дополнительная информация
В проекте произведен технологический расчет насадок абсобера при фактическом технологическом режиме, а именно: рабочее давление Р=8 МПа, рабочая температура Т = 293 К летом. Для достижения требуемой ГОСТом осушки газа необходимо иметь 3,6 единицы переноса. Согласно расчета, в зависимости от плотности орошения регулярная насадка высотой 2,1 м должна обеспечить до 6,9 единиц переноса.
Регулярная насадка предлагаемой конструкции предполагает взаимодействие потоков пара и жидкости в противотоке и перекрестном токе. Это обеспечивает высокую эффективность работы. Так скорость газа в ней получается 0,5 – 0,7 м/с (в ГПР – 3 – 5 м/с), что обуславливает низкие потери ДЭГа.
Таким образом, усовершенствованный абсорбер имеет следующие преимущества:
1) более широкий диапазон эффективной работы;
2) меньший унос жидкости с газом;
3) малые гидравлические сопротивления;
4) высокая управляемость технологическим процессом;
5) надежность и мобильность работы;
6) относительная дешевизна.
Также для модернизированного абсорбера рассчитана экономическая эффективность, которая показала, что даже на экономии гликоля мы окупаем проект в течение года.
В разделе безопасности и экологичности проекта были рассмотрены правила техники безопасности на установке комплексной подготовки газа и обеспечение безопасности при проведении различных работ, правила соблюдения электро- и пожаробезопасности, предупреждения чрезвычайных ситуаций на Ямбургском газоконденсатном месторождении. Также была представлена информация о мероприятиях по защите окружающей среды. Все предложенные мероприятия позволят обеспечить безопасную работу газового промысла, а также высокий уровень охраны окружающей среды.
Регулярная насадка предлагаемой конструкции предполагает взаимодействие потоков пара и жидкости в противотоке и перекрестном токе. Это обеспечивает высокую эффективность работы. Так скорость газа в ней получается 0,5 – 0,7 м/с (в ГПР – 3 – 5 м/с), что обуславливает низкие потери ДЭГа.
Таким образом, усовершенствованный абсорбер имеет следующие преимущества:
1) более широкий диапазон эффективной работы;
2) меньший унос жидкости с газом;
3) малые гидравлические сопротивления;
4) высокая управляемость технологическим процессом;
5) надежность и мобильность работы;
6) относительная дешевизна.
Также для модернизированного абсорбера рассчитана экономическая эффективность, которая показала, что даже на экономии гликоля мы окупаем проект в течение года.
В разделе безопасности и экологичности проекта были рассмотрены правила техники безопасности на установке комплексной подготовки газа и обеспечение безопасности при проведении различных работ, правила соблюдения электро- и пожаробезопасности, предупреждения чрезвычайных ситуаций на Ямбургском газоконденсатном месторождении. Также была представлена информация о мероприятиях по защите окружающей среды. Все предложенные мероприятия позволят обеспечить безопасную работу газового промысла, а также высокий уровень охраны окружающей среды.
Похожие материалы
Расчет и модернизация узла абсорбции-Курсовая работа-Оборудование для добычи и подготовки нефти и газа
https://vk.com/aleksey.nakonechnyy27
: 2 марта 2016
РЕФЕРАТ
Выпускная квалификационная работа содержит: 131 с., 16 рис., 16 табл., 14 источников., 4 прил.
Ключевые слова: абсорбер, осушка, диэтиленгликоль.
Объектом исследования является узел абсорбции газа.
Предметом исследования является основной аппарат - абсорбер.
Цель работы – модернизация массообменной части абсорбера.
В процессе исследования производился анализ УКПГ Ямбургского месторождения с целью повышения производительности.
В результате исследования была проведена модернизация и
1294 руб.
Расчетно-пояснительная записка-Модернизация аппарата воздушного охлаждения газ 2АВО-75-Дипломная работа-Оборудование для добычи и подготовки нефти и газа-Нефтегазовая промышленность
leha.nakonechnyy.2016@mail.ru
: 26 сентября 2016
Расчетно-пояснительная записка-Модернизация аппарата воздушного охлаждения газ 2АВО-75-Дипломная работа-Оборудование для добычи и подготовки нефти и газа-Нефтегазовая промышленность
2 РАЗРАБОТКА КОНСТРУКЦИИ АППАРАТА ВОЗДУШНОГО ОХЛАЖДЕНИЯ ГАЗА
2.1 Выбор базовой модели и техническая характеристика аппарата воз-душного охлаждения газа
Как известно, удельный объем воздуха в 830 раз больше, а теплоемкость в четыре раза меньше, чем у воды, Однако расход энергии на транспортировку теплоносителя в то
966 руб.
Расчетно-пояснительная записка к курсовому проекту
Vitalec
: 10 декабря 2008
Расчетно-пояснительная записка к курсовому проекту
по кузнечно-штамповочному оборудованию
на тему:
Пресс гидравлический для пластмасс силой 1600 кН
Курсовой проект на тему
«Гидравлический пресс для пластмасс с цилиндром плунжерного типа, расчет
узлов».
В связи с этим созданы прессы с плунжерными цилиндрами, клапанами наполнения и воз-вратными цилиндрами, что позволило при движении ползуна под действием силы тяжести в период холостого хода вниз и установке в системе привода пневмогидравлическ
Резервуар вертикальный стальной РВС-15000-Расчетно-пояснительная записка-Дипломная работа-Оборудование транспорта и хранения нефти и газа-Нефтегазовая промышленность
as.nakonechnyy.92@mail.ru
: 21 июня 2016
Курсовой проект по дисциплине «Конструкции, расчет и потребитель-ские свойства изделий» выполняется студентом 3-ого курса, специальности 230100.05 «Сервис транспортных и технологических машин и оборудова-ния нефтепродуктообеспечения и газоснабжения». Выполняя курсовой проект, мы знакомимся с нормативно-технической документацией по про-ектированию, изготовлению, монтажу и испытанию резервуаров для хра-нения нефти и нефтепродуктов с учетом положений строительных норм и правил обустройства резерву
677 руб.
Резервуар вертикальный стальной РВС-5000-Расчетно-пояснительная записка-Дипломная работа-Оборудование транспорта и хранения нефти и газа-Нефтегазовая промышленность
as.nakonechnyy.92@mail.ru
: 21 июня 2016
Резервуар вертикальный стальной РВС-5000-Расчетно-пояснительная записка-Дипломная работа-Оборудование транспорта и хранения нефти и газа-Нефтегазовая промышленность
677 руб.
Проектирование РВС-5000 для хранения дизельного топлива-Расчетно-пояснительная записка-Дипломная работа-Оборудование транспорта и хранения нефти и газа-Нефтегазовая промышленность
as.nakonechnyy.92@mail.ru
: 21 июня 2016
В данном курсовом проекте я в соответствии с заданием:
– спроектировал стальной вертикальный резервуар вместимостью 5000 для хранения нефтепродукта – дизельное топливо;
– выполнил расчет:
толщины стенки резервуара,
прочностной и на устойчивость,
узлов сопряжения стенки с крышей, стенки с днищем,
опирание резервуара на бетонное кольцо,
опоры резервуара,
перемещений стенки,
осадки резервуара,
на прочность сварные швы;
– подобрал дыхательную аппаратуру, устройства контроля уровня, датчики п
677 руб.
Проектирование бензоналивной баржи грузоподъемностью 2000 т-Расчетно-пояснительная записка-Дипломная работа-Оборудование транспорта и хранения нефти и газа-Нефтегазовая промышленность
as.nakonechnyy.92@mail.ru
: 21 июня 2016
Проектирование бензоналивной баржи грузоподъемностью 2000 т-Расчетно-пояснительная записка-Дипломная работа-Оборудование транспорта и хранения нефти и газа-Нефтегазовая промышленностьВид судна– нефтеналивная баржа с упрощенными обводами корпуса, с двойными бортами и двойным дном, вкладными танками, не участвующими в обеспечении прочности судна, предназначенная для эксплуатации без команды.
Назначение судна – перевозка светлых нефтепродуктов с температурой вспышки паров 60°C и ниже, не требующих
677 руб.
Резервуар вертикальный стальной РВС – 2000 м3-Расчетно-пояснительная записка-Дипломная работа-Оборудование транспорта и хранения нефти и газа-Нефтегазовая промышленность
as.nakonechnyy.92@mail.ru
: 21 июня 2016
Резервуар вертикальный стальной РВС – 2000 м3-Расчетно-пояснительная записка-Дипломная работа-Оборудование транспорта и хранения нефти и газа-Нефтегазовая промышленность
581 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.