Расчетная часть-Расчет горизонтального трехфазного сепаратора CPF-V-2010-1-2-3-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа

Цена:
553 руб.

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon Документ Microsoft Word.docx
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Microsoft Word

Описание

Расчетная часть-Расчет горизонтального трехфазного сепаратора CPF-V-2010-1-2-3-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа

Дополнительная информация

8. Расчеты
8.1 Расчет усилия в сварочном соединении
Расчет сварного шва выполнен согласно СНиП II-23-81 п.11.1.
Сборочный чертеж переливного лотка показан на 5 листе графической части дипломного проекта. Для сборки лотка необходимо произвести расчет сварного шва, с помощью которого производится крепление уголков к стенкам лотка.
Допускаемые напряжения для угловых сварных соединений машиностроительных конструкций, Па:



где – допускаемое напряжение основного металла, Па. Для стали 09Г2С = 300 МПа.
 Допускаемые напряжения для сварного шва по формуле (8.1), Па:



 Допускаемая нагрузка для сварного соединения рассчитывается по формуле, Н:


где l – длина сварного шва, м;
– катет сварного шва, м.



Допускаемая нагрузка для сварного соединения по формуле (8.2), Н



Нагрузка на разрыв сварного шва вычисляется:


где S – площадь полки, м2;
Рр – рабочее давление.

Площадь полки на которое действует давление газожидкостной смеси вычисляется по формуле (8.4):



где a – длина полки;
b – ширина полки.

 Найдем площадь полки по формуле (8.4), м2:



Нагрузка на разрыв сварного шва по формуле (8.3), Н:



Условие выполняется.

8.2 Расчет резьбового соединения
 Расчет резьбового соединения выполнен по методики Анурьев В.И. Справочник конструктора- машиностроителя в 3-х томах . М.: Машиностроение 2006- Т1 - 912 с., Т2 – 950 с, Т 3 -864 с.
Крепление полок к стенкам лотка производиться с помощью резьбового соединения. Данное резьбовое соединение показано на 5 листе графической части дипломного проекта.


Рисунок 8.1 – Резьбовое соединение

Таблица 8.1 – Параметры резьбы М12
Внутренний диаметр, мм Средний диаметр, мм Диаметр впадины, мм
10,106 10,863 9,853



Расчет производится по формуле (8.5):

         (8.5)

где, - растягивающая сила, Н;
  - внутренний диаметр резьбы М12, м;
 n- количество болтов;
  - допускаемое растяжение материала при растяжении/сжатии, МПа. Для стали 35 при постоянной нагрузке = 190 МПа.
Из расчета 8.1 растягивающая сила, действующая на полку:





  условие выполняется.
8.3 Расчет давление испытания сепаратора
Расчетным давлением сосудов служит пробное давление испытания рпр. Первые гидравлические испытания проводят на заводе-изготовителе на рпр.
При рабочем давлении сепаратора 0,5 МПа и более

р_пр=1,25·р_в·[σ]_20/[σ]_t , (8.6)

где, рпр - давление испытания сепаратора, МПа;
рв– рабочее давление сепаратора, Па;
[σ]_20 - допускаемое напряжение при 20° С, Па;
[σ]_t - допускаемые напряжения при рабочей температуре, Па.

р_пр=1,25·(0,6)·〖10〗^6·(350·〖10〗^6)/(300·〖10〗^6 )=0,88 МПа.

Пробное давление для аппаратов, работающих при отрицательных температурах, принимают таким же, как и для аппаратов с температурой 20°С.
При периодическом освидетельствовании сосудов испытания проводят при таком же давлении, но в рабочем состоянии. Напряжение в стенке при гидравлическом испытании не должно превышать 0,9σ_t, а при пневматическом - 0,8σ_t, где σ_t- предел текучести материала сосуда.
8.4 Прочностные расчеты
Расчет по методике Леонтьев С.А., Галиикее Р.М., Фоминых О.В. Расчет технологических установок системы сбора и подготовки. Тюмень: ТюмГНГУ, 2010. 115 с.
Теории прочности, допускаемые напряжения и запасы прочности. При расчете сосудов на прочность применяют следующие теории прочности:
1. Первая теория прочности - наибольших нормальных напряжений, по которой за расчетное принимают наибольшее кольцевое напряжение, определяемое для тонкостенных сосудов по формуле
σ_к=(р_в·d_с)/(2·s) , (8.7)

где, σ_к - кольцевое напряжение, Па;
рв - внутреннее давление в сепараторе, Па;
dс - средний диаметр сепаратора, м;
s - толщина стенки сепаратора, м.
Примем допущения, что

σ_к=[σ]_t,      (8.8)

dc=dв+s,       (8.8)

где, σ_к - наибольшее кольцевое напряжение, Па;
[σ]_t - допускаемые напряжения при рабочей температуре, Па;
dс - средний диаметр сепаратора, м;
dв- внутренний диаметр сепаратора, м;
s - толщина стенки сепаратора, м.

Тогда толщина стенки

s=(p_в·d_в)/(2·[σ]_t-p_в ), (8.9)

где, s - толщина стенки сепаратора, м;
рв - внутреннее давление в сепараторе, Па;
dв - средний диаметр сепаратора, м;
[σ]_t - допускаемые напряжения при рабочей температуре, Па;

s=(0,6·〖10〗^6·4,3)/(2·300·〖10〗^6-0,6·〖10〗^6 )=0,01 м.

Определим средний диаметр сепаратора по формуле (8.8)

dc=4,3 +0,01 =4,31 м.


Найдя все величины, можно определить σ_к по формуле (8.7)

σ_к=(0,6·〖10〗^6·4,31)/(2·0,01)=258,3 МПа.

2. Вторая-теория наибольших касательных напряжений, по которой за эквивалентное берут разницу между наибольшим и наименьшим напряжениями, то есть

σэкв = σ1 – σ3 ,     (8.10)

Для тонкостенных сосудов имеем

σ_1=σ_к=(р_в·d_с)/(2·s) , (8.11)

σ_3=σ_r=p_в, (8.12)

где, σ_к - кольцевое напряжение, Па;
рв - внутреннее давление в сепараторе, Па;
dс - средний диаметр сепаратора, м;
s - толщина стенки сепаратора, м.

σ_экв=(р_в·(d_в+3·s))/(2·s), (8.13)

где, σ_экв - эквивалентное напряжение, МПа;
рв - внутреннее давление в сепараторе, Па;
dв - внутренний диаметр сепаратора, м;
s - толщина стенки сепаратора, м.
Расчетная формула толщины стенки при σ_экв=[σ]_t имеет вид

s=(р_в·d_в)/(2·[σ]_t-3·р_в ), (8.14)

где, s - толщина стенки сепаратора, м;
рв - внутреннее давление в сепараторе, Па;
dв - внутренний диаметр сепаратора, м;
[σ]_t - допускаемые напряжения при рабочей температуре, Па.

s=(0,6·〖10〗^6·4,3)/(2·300·〖10〗^6-3·0,6·〖10〗^6 )=0,01 м.

Найдя все величины, можно определить σ_экв по формуле (8.13)

σ_экв=(0,6·〖10〗^6·(4,3+3·0,01))/(2·0,01)=258,9 МПа.

3. Третья — энергетическая теория прочности, по которой

σ_экв=√(0,5·[(σ_к-σ_м )^2+(σ_к-σ_r )^2+(σ_м-σ_r )^2 ] ) (8.15)

где, σ_экв - эквивалентное напряжение, МПа;
σ_к - наибольшее кольцевое напряжение, Па;
σ_м- меридиональное (продольное) напряжение, МПа.

Расчетная формула толщины стенки

s=(р_в·d_в)/(2,3·[σ]_t-р_в ) , (8.16)

где, s - толщина стенки сепаратора, м;
рв - внутреннее давление в сепараторе, Па;
dв - внутренний диаметр сепаратора, м;
[σ]_t - допускаемые напряжения при рабочей температуре, Па.

s=(0,6·〖10〗^6·4,3)/(2,3·300·〖10〗^6-0,6·〖10〗^6 )=0,009 м.

σ_м=("р" _"в" "·" "d" _"в" )/"4·s" , (8.17)

где, σ_м - меридиональное (продольное) напряжение, МПа;
рв - внутреннее давление в сепараторе, Па;
dв - внутренний диаметр сепаратора, м;
s - толщина стенки сепаратора, м.

σ_м=(0,6·〖10〗^6·4,3)/(4·0,009)=161,25 МПа.


Подставив значение σ_ки σ_ми приравнявσ_r к нулю (в сосудах большого диаметра рв<<σ_r), получим

σ_экв=√(0,5·[(258,3-161,25)^2+(258,3)^2+(161,25)^2 ] )=226 МПа.

Анализ данных расчетов показывает, что наименьшая толщина стенки получается по третьей теории прочности.
Для расчета сосудов, работающих при внутреннем давлении, принимают формулы, полученные из первой теории прочности, и компенсируют погрешность расчетных формул введением запаса прочности nт=1,2. Поэтому напряжение при испытании сосуда должно составлять

σ≤σ_t/1,2 , (8.18)

где, σ - напряжение при испытании сосуда, МПа;
[σ]_t - допускаемые напряжения при рабочей температуре, МПа.

С другой стороны, давление испытания превышает рабочее, а следовательно, и напряжение при испытании превышает допускаемое рабочее [σ]_t в 1,25 раза, то есть

σ≤1,25·[σ]_(t ), (8.19)

σ≤1,25·300=375 МПа.

Для стали

σ_t≈0,58·σ_в, (8.20)

где, σ_в - предел прочности, МПа.

Следовательно
[σ]_t≤σ_в/n≈σ_в/2,6 , (8.21)

где, [σ]_t - допускаемые напряжения при рабочей температуре, МПа;
σ_в - предел прочности, МПа;
n – коэффициент запаса.

[σ]_t=1087/2,6=418 МПа.

Условие прочности сосуда при испытании

[σ]_t≥σ, (8.22)

418≥375.
То есть, условие соблюдается.
8.5 Расчет гравитационного сепаратора по жидкости
Расчет производиться выполнен согласно Тронов В.П. Сепарация газа и сокращение потерь нефти. Казань: «ФЭН», 2002. – 408 с.
Произовдительность горизонтального сепаратора по нефти рассчитывается:

(8.23)

где, Qн – производительность сепаратора по нефти, м3/сут;
F – площадь зеркала жидкости, м2;
ωг – скорость всплывания пузырьков газа, м/с.

Тогда скорость всплывания пузырьков газа рассчитывается:

(8.24)

Согласно руководству по эксплуатации для сепаратора производительность по нефти до модернизации составляла 24035 м3/сут.
Площадь зеркала жидкости рассчитываем по формуле, м2:

(8.25)

где, Fэл – площадь зеркала жидкости в днище, м2;
Fп – площадь зеркала жидкости в обечайке до переливной перегородки.
Площадь зеркала в днище равна половине площади эллипса, м2:

(8.26)

где, a и b – длины полуосей, м.



Площадь зеркала жидкости в обечайке до переливной перегородки, м2:

(8.27)

где, с – длина от сварного шва обечайки и днища до переливной перегородки;
d – длина переливной перегородки.



Подставляем значения в формулу (8.25):



Рассчитываем скорость всплывания пузырьков газа (8.24):


После модернизации площадь зеркала жидкости в обечайке до переливной перегородки изменилась за счет переливного лотка.
Площадь зеркала жидкости после модернизации, м2:

(8.28)

где, Fво – площадь верхней образующей переливного лотка, м2;
Fпп – площадь переливных полок, 6,324 м2.

Площадь верхней образующей переливного лотка найдем, м2:
(8.29)
где, l – длина верхней образующей стенки лотка, м;
bл – ширина лотка, м.


Находим площадь зеркала жидкости после модернизации:


Теперь находим производительность сепаратора после модернизации по формуле (8.30), м3/сут:

(8.30)

Подставляем значения:

Производительность сепаратора увеличилась на 1,15%.
Расчетная часть-Расчет горизонтального трехфазного сепаратора CPF-V-2030-1_2_3-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
Расчетная часть-Расчет горизонтального трехфазного сепаратора CPF-V-2030-1_2_3-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
User lenya.nakonechnyy.92@mail.ru : 8 декабря 2016
553 руб.
Расчетная часть-Расчет горизонтального трехфазного сепаратора CPF-V-2030-1_2_3-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
Расчетная часть-Расчет задвижки-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
Расчетная часть-Расчет задвижки-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
User lenya.nakonechnyy.92@mail.ru : 8 декабря 2016
276 руб.
Расчетная часть-Расчет задвижки-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
Расчетная часть-Расчёт скважинного фильтра-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
Расчетная часть-Расчёт скважинного фильтра-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
User lenya.nakonechnyy.92@mail.ru : 5 февраля 2017
553 руб.
Расчетная часть-Расчёт скважинного фильтра-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
Расчетная часть-Расчет вертикального деэмульсатора-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
Расчетная часть-Расчет вертикального деэмульсатора: Рассчитаем скорость жидкости в патрубке, Определим коэффициент запаса прочности корпуса, сделанного из стали 20, Расчет фланцевого соединения, Расчет фланцевого соединения на линии вывода воды из деэмульсатора, Расчет резьбового соединения на срез-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
User leha.se92@mail.ru : 21 января 2017
276 руб.
Расчетная часть-Расчет вертикального деэмульсатора-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
Расчетная часть-Расчет нефтенакопителя динамического-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
Расчетная часть-Расчет нефтенакопителя динамического-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
User lesha.nakonechnyy.92@mail.ru : 8 декабря 2016
553 руб.
Расчетная часть-Расчет нефтенакопителя динамического-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
Расчетная часть-Расчет горизонтального сепаратора-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
Расчетная часть-Расчет горизонтального сепаратора-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
User lenya.nakonechnyy.92@mail.ru : 8 декабря 2016
553 руб.
Расчетная часть-Расчет горизонтального сепаратора-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
Расчетная часть-Расчет скважинного клапана - отсекателя-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
Расчетная часть-Расчет скважинного клапана - отсекателя: Рассчитаем силу, действующую на закрытие скважинного клапана - отсекателя, Рассчитаем скорость жидкости в трубе, Рассчитаем давление пластовой жидкости на устье в установившемся движении, Определим коэффициент запаса прочности корпуса, сделанного из стали 40Х, Рассчитаем частоту собственных колебаний жидкости в трубе-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
User leha.se92@mail.ru : 25 января 2017
368 руб.
Расчетная часть-Расчет скважинного клапана - отсекателя-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
Расчетная часть-Расчет Внутрискважинного расходомера системы-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
Расчетная часть-Расчет Внутрискважинного расходомера системы: Расчет на максимальное внутреннее избыточное давление, Расчет на разрыв от одновременного действия веса колоны НКТ и внутреннего избыточного давления, Расчет резьбы на срез, Расчет на максимальный крутящий момент при откручивании труб-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
User leha.se92@mail.ru : 25 января 2017
368 руб.
Расчетная часть-Расчет Внутрискважинного расходомера системы-Курсовая работа-Дипломная работа-Оборудование для добычи и подготовки нефти и газа
Построение красно-черных деревьев
Красно-черные деревья - один из способов балансировки деревьев. Название происходит от стандартной раскраски узлов таких деревьев в красный и черный цвета. Цвета узлов используются при балансировке дерева. Во время операций вставки и удаления поддеревья может понадобиться повернуть, чтобы достигнуть сбалансированности дерева. Оценкой как среднего время, так и наихудшего является O(log n). Красно-черное дерево - это бинарное дерево с следующими свойствами: 1) Каждый узел покрашен либо в черный,
User evelin : 8 ноября 2015
750 руб.
Построение красно-черных деревьев
Разработка конструкции коробки скоростей станка
Введение……………………………………………………………………….2 Исходные данные……………………………………………………………...3 1. Определение частот вращения………....………………………………….3 1.1. Расчет частот………………………………………………………...3 1.2. Стандартные значения………………………………………………4 2. Выбор структуры коробки скоростей ………...………………………….5 2.1. Конструктивные варианты коробки скоростей……………………5 2.2. Кинематический вариант коробки скоростей……………………..5 3. Построение структурных сеток и графика частот вращения……………6 3.1. Построение структурных сеток………………
User DaveXXXL : 24 октября 2012
Контрольная работа по дисциплине: Схемотехника телекоммуникационных устройств. Вариант №1
Контрольная работа По дисциплине: Схемотехника телекоммуникационных устройств Вариант 1 Выполнить расчет сопротивлений схемы предварительного каскада усиления на биполярном транзисторе с эмиттерной стабилизацией с исходными данными, указанными в таблице 1. Текст пояснительной записки должен включать: 1. Схему рассчитываемого усилителя. 2. Выбор режима работы транзистора. 3. Расчет цепей питания по постоянному току (сопротивлений схемы). 4. Построение нагрузочной прямой по постоянному току (с обо
User dralex : 2 октября 2020
185 руб.
Обмен информацией. Передатчик и приемник
Источник (передатчик) и получатель (приемник) служат для обмена некоторой информацией. В одном случае отправителем и получателем информации служит человек, в другом случае это может быть компьютер (так называемая телеметрия). При передаче сообщения, сигнал поступает на кодирующее устройство (кодер), в котором происходит преобразование последовательности элементов сообщения в некоторую последовательность кодовых символов. Далее закодированный сигнал проходит через модулятор, в котором перви
User Slolka : 30 сентября 2013
5 руб.
up Наверх