Зачет по дисциплине: Алгебра и геометрия. Билет №1.
Состав работы
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
1. Матрицы, операции над матрицами. Эквивалентность матриц.
2. Решить матричное уравнение , где
3. Даны векторы .
Найти
4. Даны координаты вершин пирамиды
.
Найти координаты точки пересечения плоскости с высотой пи-рамиды, опущенной из вершины на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго по-рядка, построить кривую, найти фокусное расстояние и эксцентриситет
2. Решить матричное уравнение , где
3. Даны векторы .
Найти
4. Даны координаты вершин пирамиды
.
Найти координаты точки пересечения плоскости с высотой пи-рамиды, опущенной из вершины на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго по-рядка, построить кривую, найти фокусное расстояние и эксцентриситет
Дополнительная информация
Уважаемый слушатель, дистанционного обучения,
Оценена Ваша работа по предмету: Алгебра и геометрия
Вид работы: Зачет
Оценка: Зачет
Дата оценки: 14.12.2016
Рецензия:Уважаемый С*
Агульник В.И.
Оценена Ваша работа по предмету: Алгебра и геометрия
Вид работы: Зачет
Оценка: Зачет
Дата оценки: 14.12.2016
Рецензия:Уважаемый С*
Агульник В.И.
Похожие материалы
ЗАЧЕТ по дисциплине: Алгебра и геометрия
konst1992
: 27 января 2018
Билет № 3
1. Решение систем линейных уравнений методом Крамера и методом Гаусса.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
A(1;0;-2), B(3;2;-2), C(-4;-1;3), D(2;3;1)..
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
50 руб.
Алгебра и геометрия, билет №1
тантал
: 15 декабря 2017
1. Матрицы, операции над матрицами. Эквивалентность матриц.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
A(1; 2; –1), B(0; –2; 4), C(5; 1; 3), D(–1; –2; 1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
.
100 руб.
Зачет по дисциплине Алгебра и геометрия билет 10
Антон28
: 8 августа 2025
Зачет по дисциплине Алгебра и геометрия
500 руб.
Зачет по дисциплине: Алгебра и геометрия. Билет №6
wertystn
: 23 октября 2018
1. Вектор. Операции над векторами. Коллинеарность и компланарность векторов. Линейная зависимость векторов. Векторный базис. Разложение вектора по базису
2. Решить матричное уравнение
3. Даны векторы
4. Даны координаты вершин пирамиды. Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
70 руб.
Зачет по дисциплине "Алгебра и геометрия". Билет №5
nlv
: 10 сентября 2018
Билет № 5
1. Обратная матрица, ее вычисление и свойства. Матричные уравнения. Решение систем линейных уравнений с помощью обратной матрицы.
2. Решить матричное уравнение.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
A(1;3;-2), B(-1;-3;0), C(0;2;0), D(-1;0;2).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное р
50 руб.
Зачет по дисциплине: Алгебра и Геометрия. Билет №8.
freelancer
: 21 августа 2016
Билет № 8
1. Плоскость и прямая в пространстве. Виды уравнений плоскости и прямой в пространстве.
2. Решить матричное уравнение , где
.
3. Даны векторы
Найти .
4. Даны координаты вершин пирамиды
A(1;0;1), B(-1;2;4), C(2;3;1), D(-1;2;1).
Найти координаты точки пересечения плоскости ABC с высотой пирамиды, опущенной из вершины D на эту плоскость.
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
100 руб.
Зачет по дисциплине: Алгебра и геометрия. Билет №13
barjel
: 14 ноября 2011
Сибирский государственный университет телекоммуникаций и информатики
Дистанционное обучение
1 курс 1семестр «Алгебра и геометрия». зачет
БИЛЕТ № 13
1. Теорема Кронекера – Капелли.
2. Взаимное расположение двух прямых в пространстве.
3. Решить матричное уравнение:
4. Найти уравнение параболы с вершиной в начале координат, если парабола симметрична относительно оси Ох и проходит через точку А (–1;3).
5. Найти уравнение плоскости, проходящей через прямые
и .
120 руб.
Алгебра и геометрия. Зачет. Билет №1
xadmin
: 21 октября 2017
1. Матрицы, операции над матрицами. Эквивалентность матриц.
2. Решить матричное уравнение , где
3. Даны векторы .
4. Даны координаты вершин пирамиды
5. Привести к каноническому виду уравнение кривой второго порядка, построить кривую, найти фокусное расстояние и эксцентриситет
50 руб.
Другие работы
Элективные дисциплины по физической культуре и спорту (легкая атлетика) (часть 2). Зачет.
nik200511
: 29 июля 2022
Вариант 6.
Особенности самостоятельных занятий физкультурой для женщин и мужчин
Оглавление
1. Введение
2. Особенности занятий для женщин
3. Особенности занятий для мужчин
4. Заключение
5. Список литературы
241 руб.
Информатика
Mega1
: 12 июля 2020
Контрольная работа
Часть 1. В текстовом процессоре MS Word выполнить следующие задания:
1. Установить для окна документа параметры страницы: левое поле – 3,5см; правое поле – 3см; верхнее поле – 2,5см; нижнее поле – 2см.
2. Набрать текст и оформить в соответствии с образцом:
предусмотреть буквицу в начале первого абзаца , цвет – синий;
заголовок оформить в рамку,
страницу поместить в рамку;
вставить рисунок;
3. установить маркеры зеленого цвета;
4. установить в тексте междустрочный интер
300 руб.
Теплотехника 5 задач Задача 3 Вариант 53
Z24
: 4 января 2026
Воздух с начальной температурой t1 = 27ºС сжимается в одноступенчатом поршневом компрессоре от давления р1 = 0,1 МПа до давления р2. Сжатие может происходить по изотерме, по адиабате и по политропе (с показателем политропы n).
Определить:
Для каждого из трех процессов сжатия конечную температуру газа t2, отведенную от газа теплоту Q, кВт; изменение внутренней энергии и теоретическую мощность компрессор, если его производительность G. Дать сводную таблицу и изображение процессов в рv — диа
250 руб.
Теплотехника РГАУ-МСХА 2018 Задача 2 Вариант 78
Z24
: 25 января 2026
Расход газа в поршневом одноступенчатом компрессоре составляет V1 при давлении р1=0,1 МПа и температуре t1. При сжатии температура газа повышается на 200 ºC. Сжатие происходит по политропе с показателем n. Определить конечное давление, работу сжатия и работу привода компрессора, количество отведенной теплоты, а также теоретическую мощность привода компрессора.
Ответить на вопросы:
1. Как влияет показатель политропы на конечное давление при выбранном давлении р1 и фиксированных t1 и t2 (ответ
200 руб.