Курсовая работа по дисциплине: Теория электрической связи. Вариант №08
Состав работы
|
|
|
|
|
|
|
|
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
2 ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ И МЕТОДИЧЕСКИЕ
УКАЗАНИЯ ПО ЕЕ ВЫПОЛНЕНИЮ
2.1 ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ
Разработать структурную схему системы связи, предназначенной для передачи данных и передачи аналоговых сигналов методом ИКМ для заданного вида модуляции и способа приема сигналов. Рассчитать основные параметры системы связи. Указать и обосновать пути совершенствования разработанной системы связи.
2.2 ИСХОДНЫЕ ДАННЫЕ К КУРСОВОЙ РАБОТЕ
Вариант No ... .
Способ модуляции - (ДАМ, ДЧМ, ДФМ, ОФМ, см. таблицу вариантов).
Способ приема - (КГ, НКГ — см. пояснения под таблицей вариантов).
Мощность сигнала на входе демодулятора приемника Рс = ... мВт.
Длительность элементарной посылки Т = ... мкс.
Помеха - белый шум с гауссовским законом распределения.
Спектральная плотность мощности помехи N0 = 0,001 мкВт/Гц.
Вероятность передачи сигнала "1" p(1) = ... .
Число уровней квантования N = ... .
Пик-фактор аналогового сигнала П = ... .
Таблица 1
ТАБЛИЦА ВАРИАНТОВ
(номер варианта соответствует двум последним цифрам номера студ. билета)
Первая
цифра
номера
варианта Способ
модуляции Pc,
мВт T,
мкс Последняя
цифра
номера
варианта p(1) N П
0 ДЧМ 2,8 5,0 0 0,10 128 3
1 ДФМ 2,2 6,0 1 0,75 256 2,5
2 ДАМ 2,4 8,0 2 0,80 512 2,7
3 ОФМ 3,2 4,0 3 0,15 128 2,9
4 ДЧМ 4,0 3,4 4 0,20 1024 3,1
5 ДАМ 3,2 6,0 5 0,70 256 2,5
6 ДЧМ 6,0 3,0 6 0,25 512 3,2
7 ДФМ 3,6 4,0 7 0,90 128 2,2
8 ДАМ 2,6 10,0 8 0,85 512 3,0
9 ОФМ 1,1 12,0 9 0,30 256 2,6
Способы приема сигналов:
Для нечетных вариантов, в случае ДАМ или ДЧМ — некогерентный способ приема, в случае ОФМ — способ сравнения фаз.
Для четных вариантов, в случае ДАМ, ДЧМ — когерентный способ приема, в случае ОФМ — способ сравнения полярностей.
Способ приема ДФМ в любом варианте — когерентный.
2.3 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ
КУРСОВОЙ РАБОТЫ
Пояснительная записка должна содержать задание на курсовую работу (п.2.1.), исходные данные к работе (п.2.2.) и все разделы, перечисленные в п.2.3.
Структурная схема системы связи
Дать определение системы связи. Описать структурную схему системы связи и назначение основных блоков (подробно). На схеме предусмотреть два входа и два выхода соответственно для передачи аналоговых сигналов методом ИКМ и для передачи данных (предполагается поочередная передача этих сигналов). В канале передачи данных предусмотреть наличие кодопреобразователей для помехоустойчивого или оптимального (статисти-ческого) кодирования.
Выбор схемы приемника (демодулятора)
Привести и подробно описать алгоритм работы и структурную схему приемника для заданного вида модуляции и заданного способа приема. Изобразить и описать виды сигналов при заданном виде модуляции, изобразить спектр этих сигналов для случая модуляции прямоугольными импульсами со скважностью 2. Предполагается, что приемник не является оптимальным и эффективная полоса пропускания канальных фильтров fэф = 2/T.
Расчет вероятности ошибки на выходе приемника
Привести выражение для вероятности ошибки на выходе приемника, (для заданного вида модуляции и заданного способа приема), дать определение всех входящих в нее величин.
Вычислить мощность помехи и отношение мощности сигнала к мощности помехи на входе приемника.
Вычислить вероятность ошибки при передаче дискретной информации.
Рассчитать и построить зависимость вероятности ошибки от мощности сигнала (5-6 точек). Мощность сигнала изменять от 0 до такого значения, при котором получается настолько малая вероятность ошибки, что имеющихся таблиц не хватает для ее нахождения. Все вычисления данной зависимости свести в таблицу. На графике значения мощности сигнала откладывать в линейном масштабе, а значения вероятностей ошибок - в логарифмическом.
График располагается под осью абсцисс в четвёртом квадранте. Самая верхняя точка (начало координат) соответствует вероятности, равной единице. Чем меньше вероятность ошибки, тем ниже на оси ординат располагается соответствующее значение вероятности. На графике особо указать точку, соответствующую заданной мощности сигнала Рс (это - мощность на входе демодулятора, после усиления сигнала высокочастотными усилителями входных цепей приемника).
В приведенных выше расчетах вероятность ошибки вычисляется без учета помехоустойчивого или статистического кодирования.
Сравнение выбранной схемы приемника с оптимальным приемником
Оптимальный приемник — это такой приемник, который обеспечивает максимальную помехоустойчивость при данном способе передачи (данном виде сигнала) и данном виде помех. Различают оптимальный приемник полностью известных сигналов и оптимальный приемник неполностью известных сигналов, когда приемник использует не все параметры сигнала, например, не учитывает фазу несущего колебания. В первом случае приемник обеспечивает максимально возможную (потенциальную) помехоустойчивость (приемник Котельникова, или "идеальный" приемник).
В работе дать определение оптимального приемника, привести алгоритм его работы и структурную схему в самом общем виде, пояснить физический смысл алгоритма приемника.
Помехоустойчивость приемника определяется вероятностью ошибки при заданном отношении сигнал/помеха. Для разных видов модуляции помехоустойчивость различна. Привести сравнительный анализ помехоустойчивости ДАМ, ДЧМ, ДФМ. Показать с помощью векторных диаграмм величину энергетического выигрыша при переходе от ДАМ к ДЧМ и ДФМ.
Привести формулу для вероятности ошибки в идеальном приемнике в самом общем виде (выразив ее через "эквивалентную энергию") и затем фор-мулы конкретно для трех видов модуляции.
Преобразовать алгоритм приемника Котельникова применительно к заданному способу модуляции и привести соответствующую структурную схему приемника, дать ее подробное описание и пояснить, какой энергетический выигрыш дает этот приемник по сравнению с заданным (неоптимальным) приемником.
Вычислить отношение энергии сигнала к спектральной плотности мощности помехи для заданного варианта и определить вероятность ошибки при использовании оптимального приемника.
Отметить, что потенциальную помехоустойчивость можно получить не только с помощью оптимального приемника Котельникова, но также с помощью любого когерентного приемника при условии использования в его схеме оптимального фильтра, обеспечивающего оптимальную фильтрацию.
Подробно описать сущность оптимальной фильтрации: что является критерием оптимальности, как определяется отношение сигнал/помеха на выходе оптимального фильтра, как связаны комплексный коэффициент пере-дачи оптимального фильтра и его импульсная характеристика с сигналом, для которого фильтр является оптимальным, какую форму сигнала и помехи (в общем виде) дает оптимальный фильтр на выходе.
Пояснить, почему оптимальный фильтр называется "согласованным", с чем согласуется оптимальный фильтр.
Привести схему оптимального фильтра, согласованного с прямо-угольным импульсом и форму сигнала на выходе. Пояснить, какие меры применяются для устранения межсимвольной интерференции при применении согласованного фильтра.
Передача аналоговых сигналов методом ИКМ
Подробно описать сущность ИКМ, сущность дискретизации и квантования сигналов. Определить число разрядов применяемого двоичного кода по заданному количеству уровней квантования N.
Определить отношение мощности сигнала к мощности шума квантования. Описать преимущества и недостатки ИКМ.
Помехоустойчивое кодирование
При передаче дискретных сигналов для уменьшения вероятности ошибок можно применить помехоустойчивое кодирование.
Описать сущность помехоустойчивого кодирования, принцип обнаружения и исправления ошибок. Дать классификацию помехоустойчивых кодов. Дать определение кодового расстояния. Привести формулы, поясняющие связь кодового расстояния с кратностью обнаруживаемых или исправляемых ошибок. Выбрать простейший код для обнаружения однократных ошибок, описать его сущность. Определить избыточность кода и вероятность необнаружения ошибки для вычисленной вероятности искажения элемента кода. При этом предполагается, что при применении помехо-устойчивого кодирования длительность посылок Т остается прежней (см. таблицу вариантов).
Статистическое кодирование
Цели помехоустойчивого и статистического кодирования различны. При помехоустойчивом кодировании увеличивается избыточность за счет введения дополнительных элементов в кодовые комбинации. При статистическом кодировании, наоборот, уменьшается избыточность, благодаря чему повышается производительность источника сообщений.
В работе необходимо дать определение количества информации и эн-тропии источника дискретных сообщений и вычислить энтропию для источника Вашего варианта с учетом вероятностей передачи элементов "1" и "0" и его производительность (длительность каждого элемента сообщений задана). Далее, с целью повышения производительности источника, необходимо закодировать источник с использованием неравномерного кода по методу Шеннона-Фано или близкого этому методу - методу Хаффмена, что практически более удобно. Описать, в чем заключается идея оптимального статического кодирования и почему при этом повышается производительность источника сообщений.
Пропускная способность двоичного канала связи
Вычислить пропускную способность двоичного канала связи с учетом длительности посылок Т и вероятности искажения посылок, считая канал связи симметричным.
Сравнить производительность Вашего источника с пропускной спо-собностью и сделать заключение о возможности или невозможности передачи информации по Вашему каналу связи (если производительность источника выше пропускной способности Вашего канала связи, передача информации от Вашего источника невозможна).
Рассмотреть два случая (без оптимального кодирования и с опти-мальным кодированием).
Заключение
Обсуждение полученных результатов. Пути совершенствования разработанной системы связи (применение более эффективных методов приема, оптимальной фильтрации, многоуровневых сигналов, большей разрядности сигналов ИКМ, нелинейного кодирования сигналов ИКМ, временного уплотнения каналов связи).
Литература
Привести список использованной литературы в соответствии с
ГОСТом.
Содержание (оглавление)
Дата и личная подпись студента
2.4 ОФОРМЛЕНИЕ КУРСОВОЙ РАБОТЫ
Курсовую работу следует представить на стандартных листах формата А4. Допускается использование тетрадных листов при условии соблюдения стандартного формата. Листы должны быть надежно скреплены.
Страницы, рисунки и таблицы должны быть пронумерованы. Таблицы и рисунки должны иметь соответствующие заголовки.
Текст курсовой работы должен быть расположен на одной стороне листа. На обратной (чистой) стороне листа должны выполняться исправления, если после рецензирования исправления потребуются.
После замечаний преподавателя замена листов не допускается. Допускается вклеивание дополнительных листов с исправлениями.
3 НЕКОТОРЫЕ СООТНОШЕНИЯ, НЕОБХОДИМЫЕ
ДЛЯ ВЫПОЛНЕНИЯ КУРСОВОЙ РАБОТЫ
3.1 Дисперсия помехи, 2 = Nо fэфф ,
где N0 - спектральная плотность мощности помехи (Вт/Гц),
fэфф - эффективная полоса пропускания канала связи.
3.2 Для импульсов постоянного тока прямоугольной формы
fэфф = , где Т - длительность импульса.
3.3 Энергия сигнала Е = Рс Т.
Здесь Рс - мощность сигнала на входе демодулятора приемника, равная 0,5А, где А - амплитуда сигнала.
3.4 Вероятность ошибки (вероятность искажения элементарной посылки pэ) в зависимости от вида модуляции и способа приема (когерентный - КГ или некогерентный - НКГ) при флуктуационных помехах типа гауссовского шума определяются формулами.
Таблица 2
Формулы для вычисления вероятности ошибки
Способ Вероятность ошибки pэ
модуляции К Г прием Н К Г прием
ДАМ
0,5 exp(-h2/4)
ДЧМ
0,5 exp(-h2/2)
ДФМ
НКГ прием невозможен
ОФМ
0,5 exp(-h2)
В этих формулах при неоптимальной фильтрации h2 = ,
где б2 - дисперсия (мощность) помехи. При оптимальной фильтрации (интегратор, как в приемнике Котельникова, либо оптимальный фильтр в схеме демодулятора) вместо h2 надо брать h02, где
.
3.5 Алгоритм идеального приемника Котельникова при равной вероятности сигналов S1 и S2 имеет вид
[y(t) - S1(t)]2 [y(t) - S2(t)]2, то S1, иначе S2 ,
где y(t) - сигнал на входе приемника, содержащий, кроме помехи n(t), также ожидаемый сигнал S1(t), либо S2(t).
Физический смысл неравенства: если среднеквадратическое отклонение y(t) от возможного сигнала S1 (t) меньше, чем среднеквадратическое отклонение y(t) от S2(t), то y(t) ближе к S1(t) (cодержит S1(t)) и приемник выдает S1(t); иначе приемник выдает S2(t).
Схема приемника содержит два источника опорных сигналов S1(t) и S2(t), два вычитателя, два устройства возведения в квадрат, два интегратора и схему сравнения ([1], рис. 6.2).
3.6 В случае дискретной амплитудной модуляции S1(t) = A cos 0t,
S2(t) = 0 и алгоритм приемника Котельникова принимает вид:
ВyS1(0) 0,5 Pc , то S1, иначе S2 .
Здесь ВyS1(0) - функция взаимной корреляции поступившего сигнала y(t) и S1(t) при = 0 ;
0,5Pc - половина мощности сигнала на входе демодулятора.
Схема приемника представляет собой коррелятор, на который подается входной сигнал и опорный сигнал S1(t). После коррелятора стоит решающее устройство, сравнивающее функции взаимной корреляции с величиной 0,5Рс.
• Физически смысл приведенного неравенства заключается в том, что если входной сигнал y(t) содержит, кроме помехи, сигнал S1(t), то функция взаимной корреляции между входным сигналом y(t) и S1(t) - достаточно большая величина. Если же функция взаимной корреляции ByS1(0) достаточно мала, то скорее всего y(t) сигнала S1(t) не содержит, и приемник выдает сигнал S2(t) = 0.
3.7 В случае дискретной фазовой модуляции S1(t) = A cos0t
S2 (t) = - A cos0t и алгоритм оптимального приемника будет иметь вид
ByS1 (0) > 0, то S1 , иначе S2
3.8 В случае дискретной частотной модуляции S1 (t) = A cos1t,
S2 (t) = A cos2 t. Алгоритм оптимального приемника приводится к виду
ВyS1 (0) > ByS2 (0), то S1 , иначе S2 .
3.9 Коэффициент передачи оптимального фильтра
K(j) = aS(-j) exp(-jt0 ),
где S(-j) - комплексно-сопряженный спектр сигнала, согласованного с данным оптимальным фильтром;
t0 - момент отcчета показаний на выходе фильтра (обычно t0 совпадает с длительностью элементарной посылки Т;
a - любой произвольный множитель.
Импульсная характеристика оптимального фильтра (отклик на входное воздействие в виде дельта-функции)
g(t) = S(t0 - t).
3.10 Форма сигнала и помехи на выходе оптимального фильтра при подаче на его вход аддитивной смеси сигнала S(t) и помехи n(t)
y(t) = aBS (t - T) + aBnS (t - T),
где ВS (t-T) - функция корреляции сигнала;
ВnS (t-T) - функция взаимной корреляции сигнала и помехи.
3.11 В системе с импульсно-кодовой модуляцией число разрядов дво-ичного кода n = log2N, где N - число заданных уровней квантования сигнала ИКМ.
Отношение мощности сигнала к мощности шума квантования при им-пульсно-кодовой модуляции зависит от числа разрядов кода n и пик-фактора П в соответствии с выражением
,
3.12 Простейшим способом помехоустойчивого кодирования является добавление к информационным элементам кода одного проверочного элемента. Получается код с проверкой на четность. Код обнаруживает все ошибки нечетной кратности и не обнаруживает ошибок четной кратности. Если число информационных элементов кода равно 5 (код с параметрами (n,k) = (6,5)), то вероятность необнаруженной этим кодом ошибки при независимых ошибках определяется биноминальным законом
Pно = C62p2(1- p)4+C64p4(1- p)2+p6 ,
где p - вероятность искажения одного элемента кода.
Остальные сведения о помехоустойчивом кодировании приведены в [1] и [2].
3.13 Идея оптимального статистического кодирования заключается в том, что для передачи сообщений используется неравномерный код (например, код Шеннона-Фано). При этом сообщения, имеющие большую вероятность, представляются в виде коротких комбинаций, а реже встречающимся сообщениям присваиваются более длинные комбинации (под сообщением понимаются буквы, сочетания букв, или элементы букв). Такое кодирование приводит к увеличению производительности источника.
Результаты кодирования тем лучше, чем более длинные кодовые комбинации первичного кода применяются для статистического кодирования. Поэтому в данной работе предлагается перед осуществлением статистического кодирования образовать трехбуквенные комбинации, состоящие из элементов двоичного кода 1 и 0 (всего 8 таких комбинаций: 000, 001, 011 и т.д.). Надо вычислить вероятности этих трехбуквенных комбинаций (по теореме умножения вероятностей) и, расположив эти комбинации в порядке убывания вероятностей, осуществить оптимальное кодирование. В результате получим 8 различных комбинаций неравномерного кода. Затем определяем среднюю длину полученных комбинаций оптимального кода, она будет меньше, чем 3Т. Однако следует помнить, что полученные комбинации неравномерного кода фактически содержат информацию о трех сообщениях первичного (исходного) алфавита. Разделив среднюю длину полученных комбинаций на три, получим среднюю длину новых комбинаций в расчете на одну букву первоначального дво-ичного кода. В результате средняя длительность полученных комбинаций в расчете на одну посылку будет менее Т и, следовательно, скорость передачи информации увеличится. Это и есть тот эффект, который дает статистическое кодирование.
Поделив ранее найденную величину энтропии на новое значение средней длительности, получим более высокую производительность, приближающуюся к предельно возможной.
Кодирование по методу Хаффмена сводится к построению кодового де-рева, которое и определяет вид всех кодовых комбинаций неравномерного кода.
Пример кодирования приведен в [5], задача 4.2.12 и в [6], задача 4.1.8.
3.14 Пропускная способность двоичного симметричного канала связи определяется по формуле 4.42 [1] или по формуле 3.59 [2].
В этих формулах V=1/T - скорость передачи сообщений (Бод), где Т - длительность элементарного сигнала.
Пропускная способность С двоичного канала связи с помехами всегда меньше V, так как при наличии искажений резко снижается ценность прини-маемой информации.
4 ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ
по курсу ТЭС, часть 2
1 Информационные параметры сообщений и сигна-лов. Энтропия дискретного источника независи-мых сообщений. Свойства энтропии. Энтропия ис-точника зависимых сообщений. Избыточность и производительность источника дискретных сообщений.
[ 1 ], стр. 101-106
[ 2 ], стр. 70-76
2 Взаимная информация.
[ 1 ], стр. 106-109
[ 2 ], стр. 76-78
3 Эффективное кодирование дискретных сообщений.
[ 1 ], стр. 109-112
[ 2 ], стр. 79
4 Информация в непрерывных сигналах.
[ 1 ], стр. 112-114
[ 2 ], стр. 80-83
5 Пропускная способность дискретного канала связи.
[ 1 ], стр. 114-117
[ 2 ], стр. 107-109
6 Пропускная способность непрерывного канала свя-зи.
[ 1 ], стр. 117-120
[ 2 ], стр. 109-112
7 Теорема Шеннона для канала с шумами (определе-ние, без доказательства). [ 1 ], стр. 120
[ 2 ], стр. 112
8 Прием сигналов как статистическая задача. [ 1 ], стр. 159-163
[ 2 ], стр. 117-120
9 Критерий качества приема дискретных сообщений (критерий идеального наблюдателя, критерий минимального среднего риска, отношение правдоподобия). [ 1 ], стр.163-166
[ 2 ], стр.120-123
10 Оптимальный приемник Котельникова [ 1 ], стр. 168-170
[ 2 ], стр. 124-127
11 Частные случаи приемника Котельникова [ 1 ], стр. 171-174
[ 2 ], стр. 128-131
12 Оптимальная фильтрация дискретных сигналов. Амплитудно-частотная характеристика согласованного фильтра. Импульсная характеристика. Примеры реализации согласованных фильтров.
[ 1 ], стр. 174-180
[ 2 ], стр. 131-138
13 Потенциальная помехоустойчивость при точно из-вестном ансамбле сигналов. [ 1 ], стр. 181-182
[ 2 ], стр. 139-140
14 Потенциальная помехоустойчивость приемников ДАМ, ДЧМ, ДФМ [ 1 ], стр. 183-184
[ 2 ], стр. 140-142
15 Вероятность ошибки при относительной фазовой модуляции [ 1 ], стр. 185-187
[ 2 ], стр. 142-144
16 Прием сигналов с неопределенной фазой
[ 1 ], стр. 196-197
Рис. 6.19 и 6.20
[ 2 ], стр. 156-158
Рис. 4. 2 и 4. 22
17 Прием сигналов с неопределенной амплитудой (иметь общее представление) [ 1 ], стр. 197-201
[ 2 ], стр. 158-165
18 Прием сообщений в каналах с сосредоточенными и импульсными помехами [ 1 ], стр. 201-205
Рис. 6.19 и 6.20
[ 2 ], стр. 156-158
Рис. 4.21 и 4.22
19 Критерии помехоустойчивости приёма непрерывных сообщений [ 1 ], стр. 207-209
[ 2 ], стр. 216-223
20 Помехоустойчивость систем передачи непрерывных сообщений [ 1 ], стр. 219-222
[ 2 ], стр. 223-227
21 Оптимальная фильтрация непрерывных сигналов (без выводов) [ 1 ], стр. 229-232
[ 1 ],стр. 199-202
22 Основы теории разделения сигналов
[ 1 ], стр. 263-268
[ 2 ], стр. 265-271
23 Цифровые методы передачи сообщений [ 1 ], стр. 242-246
[ 2 ], стр. 241-244
24 Шум квантования в системах передачи с ИКМ [ 1 ], стр. 246-249 [ 2 ], стр. 244-248
25 Корректирующие коды, их классификация.
Кодовое расстояние и избыточность.
[ 1 ], стр. 131-135
[ 2 ], стр. 168-172
26 Систематические коды. Мажоритарное декодирова-ние [ 1 ], стр. 144-149
[ 2 ], стр.179-184
27 Циклические коды [ 1 ], стр. 149-150
[ 2 ], стр.184-185
28 Рекуррентный (цепной) код, сверточные коды.
[ 1 ], стр. 152-153
[ 2 ], стр. 187
29 Мажоритарное декодирование циклических и свер-точных кодов [ 1 ], стр. 150-152
[ 2 ], стр. 185-186
30 Каскадные и итеративные коды
[ 1 ], стр. 150-152
[ 2 ], стр. 185-186
31 Системы с обратной связью [ 1 ], стр. 155-158
[ 2 ],стр. 190-194
32 Шумоподобные сигналы(ШПС) и их применение [ 1 ], стр. 269-274
[ 2 ],стр.274-277
33 Формирование шумоподобных сигналов [ 1 ], стр. 274-276
[ 2 ],стр. 277-281
34 Эффективность систем передачи информации [ 1 ], стр. 282-288
[ 2 ],стр. 255-259
5 ПРИЛОЖЕНИЯ
Приложение 1
ЗНАЧЕНИЯ ФУНКЦИЙ
;
x w(x) V(x) x w(x) V(x)
0,00 0,39894 0,50000 2,50 0,017528 0,006210
0,10 0,39695 0,46017 2,55 0,015449 0,005386
0,20 0,39104 0,42074 2,60 0,013583 0,004661
0,30 0,38139 0,38209 2,65 0,011912 0,004025
0,40 0,36827 0,34458 2,70 0,010421 0,003467
0,50 0,35207 0,30854 2,75 0,009094 0,002980
0,60 0,33322 0,27425 2,80 0,007915 0,002555
0,70 0,31225 0,24196 2,85 0,006873 0,002186
0,80 0,28969 0,21186 2,90 0,005953 0,001866
0,90 0,26609 0,18406 2,95 0,005143 0,001589
1,00 0,24197 0,15866 3,00 0,004432 0,001350
1,10 0,21785 0,13567 3,05 0,003810 0,001144
1,20 0,19419 0,11507 3,10 0,003267 0,000968
1,30 0,17137 0,09680 3,15 0,002794 0,000816
1,40 0,14973 0,08076 3,20 0,002384 0,000687
1,50 0,12952 0,06681 3,25 0,002029 0,000577
1,60 0,11092 0,05480 3,30 0,001723 0,000483
1,70 0,09405 0,04457 3,35 0,001459 0,000404
1,80 0,07895 0,03593 3,40 0,001232 0,000337
1,90 0,06562 0,02872 3,45 0,001038 0,000280
2,00 0,05399 0,02275 3,50 0,000873 0,000233
2,05 0,04879 0,02018 3,55 0,000732 0,000193
2,10 0,04398 0,01786 3,60 0,000612 0,000159
2,15 0,03955 0,01578 3,65 0,000510 0,000131
2,20 0,03547 0,01390 3,70 0,000425 0,000108
2,25 0,03174 0,01222 3,75 0,000353 0,000088
2,30 0,02833 0,01072 3,80 0,000292 0,000072
2,35 0,02522 0,00939 3,85 0,000241 0,000059
2,40 0,02239 0,00820 3,90 0,000199 0,000048
2,45 0,01984 0,00714 3,95 0,000163 0,000039
2,50 0,01753 0,00621 4,00 0,000134 0,000032
Приложение 2
ТАБЛИЦА ЗНАЧЕНИЙ ФУНКЦИИ – p log2 p
p – plog2p p – plog2p p – plog2p p – plog2p
0,00 0,0000
0,01 0,0664 0,26 0,5053 0,51 0,4954 0,76 0,3009
0,02 0,1129 0,27 0,5100 0,52 0,4906 0,77 0,2903
0,03 0,1518 0,28 0,5142 0,53 0,4854 0,78 0,2796
0,04 0,1858 0,29 0,5179 0,54 0,4800 0,79 0,2687
0,05 0,2161 0,3 0,5211 0,55 0,4744 0,80 0,2575
0,06 0,2435 0,31 0,5238 0,56 0,4684 0,81 0,2462
0,07 0,2686 0,32 0,5260 0,57 0,4623 0,82 0,2348
0,08 0,2915 0,33 0,5278 0,58 0,4558 0,83 0,2231
0,09 0,3127 0,34 0,5292 0,59 0,4491 0,84 0,2113
0,10 0,3322 0,35 0,5301 0,60 0,4422 0,85 0,1993
0,11 0,3503 0,36 0,5306 0,61 0,4350 0,86 0,1871
0,12 0,3671 0,37 0,5307 0,62 0,4276 0,87 0,1748
0,13 0,3826 0,38 0,5305 0,63 0,4199 0,88 0,1623
0,14 0,3971 0,39 0,5298 0,64 0,4121 0,89 0,1496
0,15 0,4105 0,40 0,5288 0,65 0,4040 0,90 0,1368
0,16 0,4230 0,41 0,5274 0,66 0,3956 0,91 0,1238
0,17 0,4346 0,42 0,5256 0,67 0,3871 0,92 0,1107
0,18 0,4453 0,43 0,5236 0,68 0,3783 0,93 0,0974
0,19 0,4552 0,44 0,5211 0,69 0,3694 0,94 0,0839
0,20 0,4644 0,45 0,5184 0,70 0,3602 0,95 0,0703
0,21 0,4728 0,46 0,5153 0,71 0,3508 0,96 0,0565
0,22 0,4806 0,47 0,5120 0,72 0,3412 0,97 0,0426
0,23 0,4877 0,48 0,5083 0,73 0,3314 0,98 0,0286
0,24 0,4941 0,49 0,5043 0,74 0,3215 0,99 0,0144
0,25 0,5000 0,50 0,5000 0,75 0,3113 1,00 0,0000
6 ЛИТЕРАТУРА
1 Теория передачи сигналов: Учебник для вузов/ Зюко А.Г., Кловский Д.Д., Назаров М.В., Финк Л.М. — 2-е изд. перераб. и доп. - М.: Радио и связь, 1986. - 304 с. ,ил.
2 Теория передачи сигналов: Учебник для вузов/ Зюко А.Г., Кловский Д.Д., Назаров М.В., Финк Л.М. - М.: Связь,1980. - 288с., ил.
3 Основы теории помехоустойчивости дискретных сигналов: Учеб. пособие./ Макаров А.А., Чиненков Л.А. - Новосибирск, СибГАТИ, 1997. - 42с.
4 Основы теории передачи информации: Учеб. пособие./ Макаров А.А., Чиненков Л.А. - Новосибирск, СибГУТИ, 1998. - 40 с.
5 Теория электрической связи. Сборник задач и упражнений: Учеб. пособие для вузов./ Кловский Д.Д., Шилкин В.А. - М.: Радио и связь, 1990. -280с.
6 Теория передачи сигналов в задачах: Учеб. пособие для вузов./ Кловский Д.Д., Шилкин В.А. - М.: Связь, 1978.- 352с.
7 Теория электрической связи: Учебник для вузов связи/ Зюко А.Г., Кловский Д.Д., Назаров М.В. Прохоров Ю.Н.: - М.: Радио и связь (в печати).
8 Методические указания и задание на курсовую работу по дисциплине «Теория электрической связи»/ Петрович Н.Т. и др. М.: Московский ордена Трудового Красного Знамени Институт связи, 1991, - 37с.
План 1998 г.
Александр Александрович Макаров
Геннадий Александрович Чернецкий
Леонид Аркадьевич Чиненков
Теория электрической связи
Методические указания
Задание на курсовую работу
Для студентов 4-го курса
заочной формы обучения
Для специальностей 200900, 201000, 201100
Редактор: Гарсков Г. Х.
Корректор: Шкитина Д.С.
__________________________________________________________________
Лицензия No 020472, октябрь 1992 г. Подписано в печать
Формат бумаги 6284 1/16
Бумага писчая No 1. Уч. изд. л. 2,5. Тираж - 300.
Заказ No
Типография СибГУТИ, 630102, Новосибирск, ул. Кирова, 86.
УКАЗАНИЯ ПО ЕЕ ВЫПОЛНЕНИЮ
2.1 ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ
Разработать структурную схему системы связи, предназначенной для передачи данных и передачи аналоговых сигналов методом ИКМ для заданного вида модуляции и способа приема сигналов. Рассчитать основные параметры системы связи. Указать и обосновать пути совершенствования разработанной системы связи.
2.2 ИСХОДНЫЕ ДАННЫЕ К КУРСОВОЙ РАБОТЕ
Вариант No ... .
Способ модуляции - (ДАМ, ДЧМ, ДФМ, ОФМ, см. таблицу вариантов).
Способ приема - (КГ, НКГ — см. пояснения под таблицей вариантов).
Мощность сигнала на входе демодулятора приемника Рс = ... мВт.
Длительность элементарной посылки Т = ... мкс.
Помеха - белый шум с гауссовским законом распределения.
Спектральная плотность мощности помехи N0 = 0,001 мкВт/Гц.
Вероятность передачи сигнала "1" p(1) = ... .
Число уровней квантования N = ... .
Пик-фактор аналогового сигнала П = ... .
Таблица 1
ТАБЛИЦА ВАРИАНТОВ
(номер варианта соответствует двум последним цифрам номера студ. билета)
Первая
цифра
номера
варианта Способ
модуляции Pc,
мВт T,
мкс Последняя
цифра
номера
варианта p(1) N П
0 ДЧМ 2,8 5,0 0 0,10 128 3
1 ДФМ 2,2 6,0 1 0,75 256 2,5
2 ДАМ 2,4 8,0 2 0,80 512 2,7
3 ОФМ 3,2 4,0 3 0,15 128 2,9
4 ДЧМ 4,0 3,4 4 0,20 1024 3,1
5 ДАМ 3,2 6,0 5 0,70 256 2,5
6 ДЧМ 6,0 3,0 6 0,25 512 3,2
7 ДФМ 3,6 4,0 7 0,90 128 2,2
8 ДАМ 2,6 10,0 8 0,85 512 3,0
9 ОФМ 1,1 12,0 9 0,30 256 2,6
Способы приема сигналов:
Для нечетных вариантов, в случае ДАМ или ДЧМ — некогерентный способ приема, в случае ОФМ — способ сравнения фаз.
Для четных вариантов, в случае ДАМ, ДЧМ — когерентный способ приема, в случае ОФМ — способ сравнения полярностей.
Способ приема ДФМ в любом варианте — когерентный.
2.3 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ
КУРСОВОЙ РАБОТЫ
Пояснительная записка должна содержать задание на курсовую работу (п.2.1.), исходные данные к работе (п.2.2.) и все разделы, перечисленные в п.2.3.
Структурная схема системы связи
Дать определение системы связи. Описать структурную схему системы связи и назначение основных блоков (подробно). На схеме предусмотреть два входа и два выхода соответственно для передачи аналоговых сигналов методом ИКМ и для передачи данных (предполагается поочередная передача этих сигналов). В канале передачи данных предусмотреть наличие кодопреобразователей для помехоустойчивого или оптимального (статисти-ческого) кодирования.
Выбор схемы приемника (демодулятора)
Привести и подробно описать алгоритм работы и структурную схему приемника для заданного вида модуляции и заданного способа приема. Изобразить и описать виды сигналов при заданном виде модуляции, изобразить спектр этих сигналов для случая модуляции прямоугольными импульсами со скважностью 2. Предполагается, что приемник не является оптимальным и эффективная полоса пропускания канальных фильтров fэф = 2/T.
Расчет вероятности ошибки на выходе приемника
Привести выражение для вероятности ошибки на выходе приемника, (для заданного вида модуляции и заданного способа приема), дать определение всех входящих в нее величин.
Вычислить мощность помехи и отношение мощности сигнала к мощности помехи на входе приемника.
Вычислить вероятность ошибки при передаче дискретной информации.
Рассчитать и построить зависимость вероятности ошибки от мощности сигнала (5-6 точек). Мощность сигнала изменять от 0 до такого значения, при котором получается настолько малая вероятность ошибки, что имеющихся таблиц не хватает для ее нахождения. Все вычисления данной зависимости свести в таблицу. На графике значения мощности сигнала откладывать в линейном масштабе, а значения вероятностей ошибок - в логарифмическом.
График располагается под осью абсцисс в четвёртом квадранте. Самая верхняя точка (начало координат) соответствует вероятности, равной единице. Чем меньше вероятность ошибки, тем ниже на оси ординат располагается соответствующее значение вероятности. На графике особо указать точку, соответствующую заданной мощности сигнала Рс (это - мощность на входе демодулятора, после усиления сигнала высокочастотными усилителями входных цепей приемника).
В приведенных выше расчетах вероятность ошибки вычисляется без учета помехоустойчивого или статистического кодирования.
Сравнение выбранной схемы приемника с оптимальным приемником
Оптимальный приемник — это такой приемник, который обеспечивает максимальную помехоустойчивость при данном способе передачи (данном виде сигнала) и данном виде помех. Различают оптимальный приемник полностью известных сигналов и оптимальный приемник неполностью известных сигналов, когда приемник использует не все параметры сигнала, например, не учитывает фазу несущего колебания. В первом случае приемник обеспечивает максимально возможную (потенциальную) помехоустойчивость (приемник Котельникова, или "идеальный" приемник).
В работе дать определение оптимального приемника, привести алгоритм его работы и структурную схему в самом общем виде, пояснить физический смысл алгоритма приемника.
Помехоустойчивость приемника определяется вероятностью ошибки при заданном отношении сигнал/помеха. Для разных видов модуляции помехоустойчивость различна. Привести сравнительный анализ помехоустойчивости ДАМ, ДЧМ, ДФМ. Показать с помощью векторных диаграмм величину энергетического выигрыша при переходе от ДАМ к ДЧМ и ДФМ.
Привести формулу для вероятности ошибки в идеальном приемнике в самом общем виде (выразив ее через "эквивалентную энергию") и затем фор-мулы конкретно для трех видов модуляции.
Преобразовать алгоритм приемника Котельникова применительно к заданному способу модуляции и привести соответствующую структурную схему приемника, дать ее подробное описание и пояснить, какой энергетический выигрыш дает этот приемник по сравнению с заданным (неоптимальным) приемником.
Вычислить отношение энергии сигнала к спектральной плотности мощности помехи для заданного варианта и определить вероятность ошибки при использовании оптимального приемника.
Отметить, что потенциальную помехоустойчивость можно получить не только с помощью оптимального приемника Котельникова, но также с помощью любого когерентного приемника при условии использования в его схеме оптимального фильтра, обеспечивающего оптимальную фильтрацию.
Подробно описать сущность оптимальной фильтрации: что является критерием оптимальности, как определяется отношение сигнал/помеха на выходе оптимального фильтра, как связаны комплексный коэффициент пере-дачи оптимального фильтра и его импульсная характеристика с сигналом, для которого фильтр является оптимальным, какую форму сигнала и помехи (в общем виде) дает оптимальный фильтр на выходе.
Пояснить, почему оптимальный фильтр называется "согласованным", с чем согласуется оптимальный фильтр.
Привести схему оптимального фильтра, согласованного с прямо-угольным импульсом и форму сигнала на выходе. Пояснить, какие меры применяются для устранения межсимвольной интерференции при применении согласованного фильтра.
Передача аналоговых сигналов методом ИКМ
Подробно описать сущность ИКМ, сущность дискретизации и квантования сигналов. Определить число разрядов применяемого двоичного кода по заданному количеству уровней квантования N.
Определить отношение мощности сигнала к мощности шума квантования. Описать преимущества и недостатки ИКМ.
Помехоустойчивое кодирование
При передаче дискретных сигналов для уменьшения вероятности ошибок можно применить помехоустойчивое кодирование.
Описать сущность помехоустойчивого кодирования, принцип обнаружения и исправления ошибок. Дать классификацию помехоустойчивых кодов. Дать определение кодового расстояния. Привести формулы, поясняющие связь кодового расстояния с кратностью обнаруживаемых или исправляемых ошибок. Выбрать простейший код для обнаружения однократных ошибок, описать его сущность. Определить избыточность кода и вероятность необнаружения ошибки для вычисленной вероятности искажения элемента кода. При этом предполагается, что при применении помехо-устойчивого кодирования длительность посылок Т остается прежней (см. таблицу вариантов).
Статистическое кодирование
Цели помехоустойчивого и статистического кодирования различны. При помехоустойчивом кодировании увеличивается избыточность за счет введения дополнительных элементов в кодовые комбинации. При статистическом кодировании, наоборот, уменьшается избыточность, благодаря чему повышается производительность источника сообщений.
В работе необходимо дать определение количества информации и эн-тропии источника дискретных сообщений и вычислить энтропию для источника Вашего варианта с учетом вероятностей передачи элементов "1" и "0" и его производительность (длительность каждого элемента сообщений задана). Далее, с целью повышения производительности источника, необходимо закодировать источник с использованием неравномерного кода по методу Шеннона-Фано или близкого этому методу - методу Хаффмена, что практически более удобно. Описать, в чем заключается идея оптимального статического кодирования и почему при этом повышается производительность источника сообщений.
Пропускная способность двоичного канала связи
Вычислить пропускную способность двоичного канала связи с учетом длительности посылок Т и вероятности искажения посылок, считая канал связи симметричным.
Сравнить производительность Вашего источника с пропускной спо-собностью и сделать заключение о возможности или невозможности передачи информации по Вашему каналу связи (если производительность источника выше пропускной способности Вашего канала связи, передача информации от Вашего источника невозможна).
Рассмотреть два случая (без оптимального кодирования и с опти-мальным кодированием).
Заключение
Обсуждение полученных результатов. Пути совершенствования разработанной системы связи (применение более эффективных методов приема, оптимальной фильтрации, многоуровневых сигналов, большей разрядности сигналов ИКМ, нелинейного кодирования сигналов ИКМ, временного уплотнения каналов связи).
Литература
Привести список использованной литературы в соответствии с
ГОСТом.
Содержание (оглавление)
Дата и личная подпись студента
2.4 ОФОРМЛЕНИЕ КУРСОВОЙ РАБОТЫ
Курсовую работу следует представить на стандартных листах формата А4. Допускается использование тетрадных листов при условии соблюдения стандартного формата. Листы должны быть надежно скреплены.
Страницы, рисунки и таблицы должны быть пронумерованы. Таблицы и рисунки должны иметь соответствующие заголовки.
Текст курсовой работы должен быть расположен на одной стороне листа. На обратной (чистой) стороне листа должны выполняться исправления, если после рецензирования исправления потребуются.
После замечаний преподавателя замена листов не допускается. Допускается вклеивание дополнительных листов с исправлениями.
3 НЕКОТОРЫЕ СООТНОШЕНИЯ, НЕОБХОДИМЫЕ
ДЛЯ ВЫПОЛНЕНИЯ КУРСОВОЙ РАБОТЫ
3.1 Дисперсия помехи, 2 = Nо fэфф ,
где N0 - спектральная плотность мощности помехи (Вт/Гц),
fэфф - эффективная полоса пропускания канала связи.
3.2 Для импульсов постоянного тока прямоугольной формы
fэфф = , где Т - длительность импульса.
3.3 Энергия сигнала Е = Рс Т.
Здесь Рс - мощность сигнала на входе демодулятора приемника, равная 0,5А, где А - амплитуда сигнала.
3.4 Вероятность ошибки (вероятность искажения элементарной посылки pэ) в зависимости от вида модуляции и способа приема (когерентный - КГ или некогерентный - НКГ) при флуктуационных помехах типа гауссовского шума определяются формулами.
Таблица 2
Формулы для вычисления вероятности ошибки
Способ Вероятность ошибки pэ
модуляции К Г прием Н К Г прием
ДАМ
0,5 exp(-h2/4)
ДЧМ
0,5 exp(-h2/2)
ДФМ
НКГ прием невозможен
ОФМ
0,5 exp(-h2)
В этих формулах при неоптимальной фильтрации h2 = ,
где б2 - дисперсия (мощность) помехи. При оптимальной фильтрации (интегратор, как в приемнике Котельникова, либо оптимальный фильтр в схеме демодулятора) вместо h2 надо брать h02, где
.
3.5 Алгоритм идеального приемника Котельникова при равной вероятности сигналов S1 и S2 имеет вид
[y(t) - S1(t)]2 [y(t) - S2(t)]2, то S1, иначе S2 ,
где y(t) - сигнал на входе приемника, содержащий, кроме помехи n(t), также ожидаемый сигнал S1(t), либо S2(t).
Физический смысл неравенства: если среднеквадратическое отклонение y(t) от возможного сигнала S1 (t) меньше, чем среднеквадратическое отклонение y(t) от S2(t), то y(t) ближе к S1(t) (cодержит S1(t)) и приемник выдает S1(t); иначе приемник выдает S2(t).
Схема приемника содержит два источника опорных сигналов S1(t) и S2(t), два вычитателя, два устройства возведения в квадрат, два интегратора и схему сравнения ([1], рис. 6.2).
3.6 В случае дискретной амплитудной модуляции S1(t) = A cos 0t,
S2(t) = 0 и алгоритм приемника Котельникова принимает вид:
ВyS1(0) 0,5 Pc , то S1, иначе S2 .
Здесь ВyS1(0) - функция взаимной корреляции поступившего сигнала y(t) и S1(t) при = 0 ;
0,5Pc - половина мощности сигнала на входе демодулятора.
Схема приемника представляет собой коррелятор, на который подается входной сигнал и опорный сигнал S1(t). После коррелятора стоит решающее устройство, сравнивающее функции взаимной корреляции с величиной 0,5Рс.
• Физически смысл приведенного неравенства заключается в том, что если входной сигнал y(t) содержит, кроме помехи, сигнал S1(t), то функция взаимной корреляции между входным сигналом y(t) и S1(t) - достаточно большая величина. Если же функция взаимной корреляции ByS1(0) достаточно мала, то скорее всего y(t) сигнала S1(t) не содержит, и приемник выдает сигнал S2(t) = 0.
3.7 В случае дискретной фазовой модуляции S1(t) = A cos0t
S2 (t) = - A cos0t и алгоритм оптимального приемника будет иметь вид
ByS1 (0) > 0, то S1 , иначе S2
3.8 В случае дискретной частотной модуляции S1 (t) = A cos1t,
S2 (t) = A cos2 t. Алгоритм оптимального приемника приводится к виду
ВyS1 (0) > ByS2 (0), то S1 , иначе S2 .
3.9 Коэффициент передачи оптимального фильтра
K(j) = aS(-j) exp(-jt0 ),
где S(-j) - комплексно-сопряженный спектр сигнала, согласованного с данным оптимальным фильтром;
t0 - момент отcчета показаний на выходе фильтра (обычно t0 совпадает с длительностью элементарной посылки Т;
a - любой произвольный множитель.
Импульсная характеристика оптимального фильтра (отклик на входное воздействие в виде дельта-функции)
g(t) = S(t0 - t).
3.10 Форма сигнала и помехи на выходе оптимального фильтра при подаче на его вход аддитивной смеси сигнала S(t) и помехи n(t)
y(t) = aBS (t - T) + aBnS (t - T),
где ВS (t-T) - функция корреляции сигнала;
ВnS (t-T) - функция взаимной корреляции сигнала и помехи.
3.11 В системе с импульсно-кодовой модуляцией число разрядов дво-ичного кода n = log2N, где N - число заданных уровней квантования сигнала ИКМ.
Отношение мощности сигнала к мощности шума квантования при им-пульсно-кодовой модуляции зависит от числа разрядов кода n и пик-фактора П в соответствии с выражением
,
3.12 Простейшим способом помехоустойчивого кодирования является добавление к информационным элементам кода одного проверочного элемента. Получается код с проверкой на четность. Код обнаруживает все ошибки нечетной кратности и не обнаруживает ошибок четной кратности. Если число информационных элементов кода равно 5 (код с параметрами (n,k) = (6,5)), то вероятность необнаруженной этим кодом ошибки при независимых ошибках определяется биноминальным законом
Pно = C62p2(1- p)4+C64p4(1- p)2+p6 ,
где p - вероятность искажения одного элемента кода.
Остальные сведения о помехоустойчивом кодировании приведены в [1] и [2].
3.13 Идея оптимального статистического кодирования заключается в том, что для передачи сообщений используется неравномерный код (например, код Шеннона-Фано). При этом сообщения, имеющие большую вероятность, представляются в виде коротких комбинаций, а реже встречающимся сообщениям присваиваются более длинные комбинации (под сообщением понимаются буквы, сочетания букв, или элементы букв). Такое кодирование приводит к увеличению производительности источника.
Результаты кодирования тем лучше, чем более длинные кодовые комбинации первичного кода применяются для статистического кодирования. Поэтому в данной работе предлагается перед осуществлением статистического кодирования образовать трехбуквенные комбинации, состоящие из элементов двоичного кода 1 и 0 (всего 8 таких комбинаций: 000, 001, 011 и т.д.). Надо вычислить вероятности этих трехбуквенных комбинаций (по теореме умножения вероятностей) и, расположив эти комбинации в порядке убывания вероятностей, осуществить оптимальное кодирование. В результате получим 8 различных комбинаций неравномерного кода. Затем определяем среднюю длину полученных комбинаций оптимального кода, она будет меньше, чем 3Т. Однако следует помнить, что полученные комбинации неравномерного кода фактически содержат информацию о трех сообщениях первичного (исходного) алфавита. Разделив среднюю длину полученных комбинаций на три, получим среднюю длину новых комбинаций в расчете на одну букву первоначального дво-ичного кода. В результате средняя длительность полученных комбинаций в расчете на одну посылку будет менее Т и, следовательно, скорость передачи информации увеличится. Это и есть тот эффект, который дает статистическое кодирование.
Поделив ранее найденную величину энтропии на новое значение средней длительности, получим более высокую производительность, приближающуюся к предельно возможной.
Кодирование по методу Хаффмена сводится к построению кодового де-рева, которое и определяет вид всех кодовых комбинаций неравномерного кода.
Пример кодирования приведен в [5], задача 4.2.12 и в [6], задача 4.1.8.
3.14 Пропускная способность двоичного симметричного канала связи определяется по формуле 4.42 [1] или по формуле 3.59 [2].
В этих формулах V=1/T - скорость передачи сообщений (Бод), где Т - длительность элементарного сигнала.
Пропускная способность С двоичного канала связи с помехами всегда меньше V, так как при наличии искажений резко снижается ценность прини-маемой информации.
4 ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ
по курсу ТЭС, часть 2
1 Информационные параметры сообщений и сигна-лов. Энтропия дискретного источника независи-мых сообщений. Свойства энтропии. Энтропия ис-точника зависимых сообщений. Избыточность и производительность источника дискретных сообщений.
[ 1 ], стр. 101-106
[ 2 ], стр. 70-76
2 Взаимная информация.
[ 1 ], стр. 106-109
[ 2 ], стр. 76-78
3 Эффективное кодирование дискретных сообщений.
[ 1 ], стр. 109-112
[ 2 ], стр. 79
4 Информация в непрерывных сигналах.
[ 1 ], стр. 112-114
[ 2 ], стр. 80-83
5 Пропускная способность дискретного канала связи.
[ 1 ], стр. 114-117
[ 2 ], стр. 107-109
6 Пропускная способность непрерывного канала свя-зи.
[ 1 ], стр. 117-120
[ 2 ], стр. 109-112
7 Теорема Шеннона для канала с шумами (определе-ние, без доказательства). [ 1 ], стр. 120
[ 2 ], стр. 112
8 Прием сигналов как статистическая задача. [ 1 ], стр. 159-163
[ 2 ], стр. 117-120
9 Критерий качества приема дискретных сообщений (критерий идеального наблюдателя, критерий минимального среднего риска, отношение правдоподобия). [ 1 ], стр.163-166
[ 2 ], стр.120-123
10 Оптимальный приемник Котельникова [ 1 ], стр. 168-170
[ 2 ], стр. 124-127
11 Частные случаи приемника Котельникова [ 1 ], стр. 171-174
[ 2 ], стр. 128-131
12 Оптимальная фильтрация дискретных сигналов. Амплитудно-частотная характеристика согласованного фильтра. Импульсная характеристика. Примеры реализации согласованных фильтров.
[ 1 ], стр. 174-180
[ 2 ], стр. 131-138
13 Потенциальная помехоустойчивость при точно из-вестном ансамбле сигналов. [ 1 ], стр. 181-182
[ 2 ], стр. 139-140
14 Потенциальная помехоустойчивость приемников ДАМ, ДЧМ, ДФМ [ 1 ], стр. 183-184
[ 2 ], стр. 140-142
15 Вероятность ошибки при относительной фазовой модуляции [ 1 ], стр. 185-187
[ 2 ], стр. 142-144
16 Прием сигналов с неопределенной фазой
[ 1 ], стр. 196-197
Рис. 6.19 и 6.20
[ 2 ], стр. 156-158
Рис. 4. 2 и 4. 22
17 Прием сигналов с неопределенной амплитудой (иметь общее представление) [ 1 ], стр. 197-201
[ 2 ], стр. 158-165
18 Прием сообщений в каналах с сосредоточенными и импульсными помехами [ 1 ], стр. 201-205
Рис. 6.19 и 6.20
[ 2 ], стр. 156-158
Рис. 4.21 и 4.22
19 Критерии помехоустойчивости приёма непрерывных сообщений [ 1 ], стр. 207-209
[ 2 ], стр. 216-223
20 Помехоустойчивость систем передачи непрерывных сообщений [ 1 ], стр. 219-222
[ 2 ], стр. 223-227
21 Оптимальная фильтрация непрерывных сигналов (без выводов) [ 1 ], стр. 229-232
[ 1 ],стр. 199-202
22 Основы теории разделения сигналов
[ 1 ], стр. 263-268
[ 2 ], стр. 265-271
23 Цифровые методы передачи сообщений [ 1 ], стр. 242-246
[ 2 ], стр. 241-244
24 Шум квантования в системах передачи с ИКМ [ 1 ], стр. 246-249 [ 2 ], стр. 244-248
25 Корректирующие коды, их классификация.
Кодовое расстояние и избыточность.
[ 1 ], стр. 131-135
[ 2 ], стр. 168-172
26 Систематические коды. Мажоритарное декодирова-ние [ 1 ], стр. 144-149
[ 2 ], стр.179-184
27 Циклические коды [ 1 ], стр. 149-150
[ 2 ], стр.184-185
28 Рекуррентный (цепной) код, сверточные коды.
[ 1 ], стр. 152-153
[ 2 ], стр. 187
29 Мажоритарное декодирование циклических и свер-точных кодов [ 1 ], стр. 150-152
[ 2 ], стр. 185-186
30 Каскадные и итеративные коды
[ 1 ], стр. 150-152
[ 2 ], стр. 185-186
31 Системы с обратной связью [ 1 ], стр. 155-158
[ 2 ],стр. 190-194
32 Шумоподобные сигналы(ШПС) и их применение [ 1 ], стр. 269-274
[ 2 ],стр.274-277
33 Формирование шумоподобных сигналов [ 1 ], стр. 274-276
[ 2 ],стр. 277-281
34 Эффективность систем передачи информации [ 1 ], стр. 282-288
[ 2 ],стр. 255-259
5 ПРИЛОЖЕНИЯ
Приложение 1
ЗНАЧЕНИЯ ФУНКЦИЙ
;
x w(x) V(x) x w(x) V(x)
0,00 0,39894 0,50000 2,50 0,017528 0,006210
0,10 0,39695 0,46017 2,55 0,015449 0,005386
0,20 0,39104 0,42074 2,60 0,013583 0,004661
0,30 0,38139 0,38209 2,65 0,011912 0,004025
0,40 0,36827 0,34458 2,70 0,010421 0,003467
0,50 0,35207 0,30854 2,75 0,009094 0,002980
0,60 0,33322 0,27425 2,80 0,007915 0,002555
0,70 0,31225 0,24196 2,85 0,006873 0,002186
0,80 0,28969 0,21186 2,90 0,005953 0,001866
0,90 0,26609 0,18406 2,95 0,005143 0,001589
1,00 0,24197 0,15866 3,00 0,004432 0,001350
1,10 0,21785 0,13567 3,05 0,003810 0,001144
1,20 0,19419 0,11507 3,10 0,003267 0,000968
1,30 0,17137 0,09680 3,15 0,002794 0,000816
1,40 0,14973 0,08076 3,20 0,002384 0,000687
1,50 0,12952 0,06681 3,25 0,002029 0,000577
1,60 0,11092 0,05480 3,30 0,001723 0,000483
1,70 0,09405 0,04457 3,35 0,001459 0,000404
1,80 0,07895 0,03593 3,40 0,001232 0,000337
1,90 0,06562 0,02872 3,45 0,001038 0,000280
2,00 0,05399 0,02275 3,50 0,000873 0,000233
2,05 0,04879 0,02018 3,55 0,000732 0,000193
2,10 0,04398 0,01786 3,60 0,000612 0,000159
2,15 0,03955 0,01578 3,65 0,000510 0,000131
2,20 0,03547 0,01390 3,70 0,000425 0,000108
2,25 0,03174 0,01222 3,75 0,000353 0,000088
2,30 0,02833 0,01072 3,80 0,000292 0,000072
2,35 0,02522 0,00939 3,85 0,000241 0,000059
2,40 0,02239 0,00820 3,90 0,000199 0,000048
2,45 0,01984 0,00714 3,95 0,000163 0,000039
2,50 0,01753 0,00621 4,00 0,000134 0,000032
Приложение 2
ТАБЛИЦА ЗНАЧЕНИЙ ФУНКЦИИ – p log2 p
p – plog2p p – plog2p p – plog2p p – plog2p
0,00 0,0000
0,01 0,0664 0,26 0,5053 0,51 0,4954 0,76 0,3009
0,02 0,1129 0,27 0,5100 0,52 0,4906 0,77 0,2903
0,03 0,1518 0,28 0,5142 0,53 0,4854 0,78 0,2796
0,04 0,1858 0,29 0,5179 0,54 0,4800 0,79 0,2687
0,05 0,2161 0,3 0,5211 0,55 0,4744 0,80 0,2575
0,06 0,2435 0,31 0,5238 0,56 0,4684 0,81 0,2462
0,07 0,2686 0,32 0,5260 0,57 0,4623 0,82 0,2348
0,08 0,2915 0,33 0,5278 0,58 0,4558 0,83 0,2231
0,09 0,3127 0,34 0,5292 0,59 0,4491 0,84 0,2113
0,10 0,3322 0,35 0,5301 0,60 0,4422 0,85 0,1993
0,11 0,3503 0,36 0,5306 0,61 0,4350 0,86 0,1871
0,12 0,3671 0,37 0,5307 0,62 0,4276 0,87 0,1748
0,13 0,3826 0,38 0,5305 0,63 0,4199 0,88 0,1623
0,14 0,3971 0,39 0,5298 0,64 0,4121 0,89 0,1496
0,15 0,4105 0,40 0,5288 0,65 0,4040 0,90 0,1368
0,16 0,4230 0,41 0,5274 0,66 0,3956 0,91 0,1238
0,17 0,4346 0,42 0,5256 0,67 0,3871 0,92 0,1107
0,18 0,4453 0,43 0,5236 0,68 0,3783 0,93 0,0974
0,19 0,4552 0,44 0,5211 0,69 0,3694 0,94 0,0839
0,20 0,4644 0,45 0,5184 0,70 0,3602 0,95 0,0703
0,21 0,4728 0,46 0,5153 0,71 0,3508 0,96 0,0565
0,22 0,4806 0,47 0,5120 0,72 0,3412 0,97 0,0426
0,23 0,4877 0,48 0,5083 0,73 0,3314 0,98 0,0286
0,24 0,4941 0,49 0,5043 0,74 0,3215 0,99 0,0144
0,25 0,5000 0,50 0,5000 0,75 0,3113 1,00 0,0000
6 ЛИТЕРАТУРА
1 Теория передачи сигналов: Учебник для вузов/ Зюко А.Г., Кловский Д.Д., Назаров М.В., Финк Л.М. — 2-е изд. перераб. и доп. - М.: Радио и связь, 1986. - 304 с. ,ил.
2 Теория передачи сигналов: Учебник для вузов/ Зюко А.Г., Кловский Д.Д., Назаров М.В., Финк Л.М. - М.: Связь,1980. - 288с., ил.
3 Основы теории помехоустойчивости дискретных сигналов: Учеб. пособие./ Макаров А.А., Чиненков Л.А. - Новосибирск, СибГАТИ, 1997. - 42с.
4 Основы теории передачи информации: Учеб. пособие./ Макаров А.А., Чиненков Л.А. - Новосибирск, СибГУТИ, 1998. - 40 с.
5 Теория электрической связи. Сборник задач и упражнений: Учеб. пособие для вузов./ Кловский Д.Д., Шилкин В.А. - М.: Радио и связь, 1990. -280с.
6 Теория передачи сигналов в задачах: Учеб. пособие для вузов./ Кловский Д.Д., Шилкин В.А. - М.: Связь, 1978.- 352с.
7 Теория электрической связи: Учебник для вузов связи/ Зюко А.Г., Кловский Д.Д., Назаров М.В. Прохоров Ю.Н.: - М.: Радио и связь (в печати).
8 Методические указания и задание на курсовую работу по дисциплине «Теория электрической связи»/ Петрович Н.Т. и др. М.: Московский ордена Трудового Красного Знамени Институт связи, 1991, - 37с.
План 1998 г.
Александр Александрович Макаров
Геннадий Александрович Чернецкий
Леонид Аркадьевич Чиненков
Теория электрической связи
Методические указания
Задание на курсовую работу
Для студентов 4-го курса
заочной формы обучения
Для специальностей 200900, 201000, 201100
Редактор: Гарсков Г. Х.
Корректор: Шкитина Д.С.
__________________________________________________________________
Лицензия No 020472, октябрь 1992 г. Подписано в печать
Формат бумаги 6284 1/16
Бумага писчая No 1. Уч. изд. л. 2,5. Тираж - 300.
Заказ No
Типография СибГУТИ, 630102, Новосибирск, ул. Кирова, 86.
Похожие материалы
Курсовая работа по дисциплине «Теория электрической связи». Вариант: №08
faraon666
: 21 сентября 2013
Исходные данные
1) Вариант 08
2) Вид сигнала в канале связи ОФМ
3) Скорость передачи сигналов V=16000 Бод
4) Амплитуда канальных сигналов А=4 мВ
5) Дисперсия шума 2 =2,624∙10-6 В2
6) Априорная вероятность передачи символов «1» р(1) = 0,72
7) Способ приема сигнала – КГ
8) Полоса пропускания реального приемника сигналов ДОФМ - fпрДОФМ
=2/T, где T = 1/V - длительность элемента сигнала, определяемая скоростью передачи сигналов V
9) Значение отсчета принятой смеси сигнала и помехи на входе решающ
250 руб.
Теория электрической связи, Курсовая, вариант 08.
syberiangod
: 16 марта 2011
Задание
Разработать обобщенную структурную схему системы связи для передачи непрерывных сообщений дискретными сигналами, разработать структурную схему приемника и структурную схему оптимального фильтра, рассчитать основные характеристики разработанной системы связи и сделать обобщающие выводы по результатам расчетов.
Исходные данные
1) Вариант 08
2) Вид сигнала в канале связи ОФМ
3) Скорость передачи сигналов V=16000 Бод
4) Амплитуда канальных сигналов А=4 В
5) Дисперсия шума 2 =2,624∙10-6 В2
160 руб.
Курсовая работа по дисциплине: Теория электрической связи
Лесник
: 5 апреля 2017
Задание: - разработать обобщенную структурную схему системы связи для передачи непрерывных сообщений дискретными сигналами, разработать структурную схему приемника и структурную схему оптимального фильтра, рассчитать основные характеристики разработанной системы связи и сделать обобщающие выводы по результатам расчетов.
Исходные данные
1 Номер варианта: N =08
2 Вид сигнала в канале с
70 руб.
Курсовая работа по дисциплине теория электрической связи
ЦарьАнаНов
: 2 апреля 2017
Работа защищена в 2015г. на отлично. Вариант №15
1. Исходные данные
2. Структурная схема системы электросвязи
3. Назначение отдельных элементов схемы
4. Выполнение задания
1) По заданной функции корреляции исходного сообщения:
а) рассчитать интервал корреляции, спектр плотности мощности, начальную энергетическую
250 руб.
Курсовая работа по дисциплине "Теория электрической связи"
Помощь студентам СибГУТИ ДО
: 10 ноября 2013
1 Номер варианта N =15.
2 Вид сигнала в канале связи: ДЧМ.
3 Скорость передачи сигналов V = 15*103 , Бод.
4 Амплитуда канальных сигналов А =3,87*10-3 В .
5 Дисперсия шума 2 = 3,3*10-6 Вт .
6 Априорная вероятность передачи символов "1" p(1) = 0,6.
7 Способ приема сигнала: КГ.
8 Полоса пропускания реального приемника, определяемая шириной спектра сигналов двоичных ДАМ, ДЧМ, ДФМ, ДОФМ, вычисляется по формулам
fпрДЧМ = 2,5/T=2,5*V=2,5*15*103=3,75*104 Гц
где T = 1/V -
550 руб.
Курсовая работа по дисциплине «Теория электрической связи»
DaemonMag
: 2 сентября 2011
Задание на курсовую работу
Задание: - разработать обобщенную структурную схему системы связи для передачи непрерывных сообщений дискретными сигналами, разработать структурную схему приемника и структурную схему оптимального фильтра, рассчитать основные характеристики разработанной системы связи и сделать обобщающие выводы по результатам расчетов.
Исходные данные:
1 Номер варианта: N =05
2 Вид сигнала в канале связи: ДЧМ
3 Скорость передачи сигналов: V = 5000
200 руб.
Курсовая работа по дисциплине: Теория электрической связи РАЗРАБОТКА СИСТЕМЫ СВЯЗИ ДЛЯ ПЕРЕДАЧИ НЕПРЕРЫВНЫХ СООБЩЕНИЙ ДИСКРЕТНЫМИ СИГНАЛАМИ Вариант 08
mirex2014
: 27 апреля 2017
Курсовая работа По дисциплине: Теория электрической связи РАЗРАБОТКА СИСТЕМЫ СВЯЗИ ДЛЯ ПЕРЕДАЧИ НЕПРЕРЫВНЫХ СООБЩЕНИЙ ДИСКРЕТНЫМИ СИГНАЛАМИ Вариант 08
Задание и исходные данные
Разработать обобщенную структурную схему системы связи для передачи непрерывных сообщений дискретными сигналами, разработать структурную схему приемника и структурную схему оптимального фильтра, рассчитать основные характеристики разработанной системы связи и сделать обобщающие выводы по результатам расчетов.
Исходные
450 руб.
Курсовая работа по дисциплине: Теория электрической связи. Вариант №14.
teacher-sib
: 19 ноября 2016
Курсовая работа
«Разработка системы связи для передачи непрерывных сообщений дискретными сигналами»
Задание
Разработать обобщенную структурную схему системы связи для передачи непрерывных сообщений дискретными сигналами, разработать структурную схему приемника и структурную схему оптимального фильтра, рассчитать основные характеристики разработанной системы связи и сделать обобщающие выводы по результатам расчетов.
Исходные данные
1. Номер варианта N =14 .
2. Вид сигнала в канале связи - ДАМ.
250 руб.
Другие работы
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
mosintacd
: 28 июня 2024
ММА/ИДО Иностранный язык в профессиональной сфере (ЛТМ) Тест 20 из 20 баллов 2024 год
Московская международная академия Институт дистанционного образования Тест оценка ОТЛИЧНО
2024 год
Ответы на 20 вопросов
Результат – 100 баллов
С вопросами вы можете ознакомиться до покупки
ВОПРОСЫ:
1. We have … to an agreement
2. Our senses are … a great role in non-verbal communication
3. Saving time at business communication leads to … results in work
4. Conducting negotiations with foreigners we shoul
150 руб.
Задание №2. Методы управления образовательными учреждениями
studypro
: 13 октября 2016
Практическое задание 2
Задание 1. Опишите по одному примеру использования каждого из методов управления в Вашей профессиональной деятельности.
Задание 2. Приняв на работу нового сотрудника, Вы надеялись на более эффективную работу, но в результате разочарованы, так как он не соответствует одному из важнейших качеств менеджера - самодисциплине. Он не обязателен, не собран, не умеет отказывать и т.д.. Но, тем не менее, он отличный профессионал в своей деятельности. Какими методами управления Вы во
200 руб.
Особенности бюджетного финансирования
Aronitue9
: 24 августа 2012
Содержание:
Введение
Теоретические основы бюджетного финансирования
Понятие и сущность бюджетного финансирования
Характеристика основных форм бюджетного финансирования
Анализ бюджетного финансирования образования
Понятие и источники бюджетного финансирования образования
Проблемы бюджетного финансирования образования
Основные направления совершенствования бюджетного финансирования образования
Заключение
Список использованный литературы
Цель курсовой работы – исследовать особенности бюджетного фин
20 руб.
Программирование (часть 1-я). Зачёт. Билет №2
sibsutisru
: 3 сентября 2021
ЗАЧЕТ по дисциплине “Программирование (часть 1)”
Билет 2
Определить значение переменной y после работы следующего фрагмента программы:
a = 3; b = 2 * a – 10; x = 0; y = 2 * b + a;
if ( b > y ) or ( 2 * b < y + a ) ) then begin x = b – y; y = x + 4 end;
if ( a + b < 0 ) and ( y + x > 2 ) ) then begin x = x + y; y = x – 2 end;
200 руб.