Все разделы / Теория связи /


Страницу Назад
Поискать другие аналоги этой работы

(35 )

Теория сложностей вычислительных процессов и структур. Экзамен. 4-й семестр. 5 билет

ID: 176909
Дата закачки: 22 Января 2017
Продавец: karapulka (Напишите, если есть вопросы)
    Посмотреть другие работы этого продавца

Тип работы: Работа Экзаменационная
Сдано в учебном заведении: ДО СИБГУТИ

Описание:
1. С помощью алгоритма Форда-Беллмана найти кратчайшие расстояния от вершины 3 (нумерация вершин начинается с 0) до всех остальных вершин связного взвешенного неориентированного графа, имеющего 5 вершин. Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин.
02471
20596
45083
79801
16310
2. Оптимальным образом расставить скобки при перемножении матриц
М1[5x4], M2[4x2], M3[2x6], М4[6x9], M5[9x3]


Комментарии: Сдавалась в 2015 г.
Оценка: отлично

Размер файла: 41,5 Кбайт
Фаил: Microsoft Word (.doc)

   Скачать

   Добавить в корзину


    Скачано: 2         Коментариев: 0


Не можешь найти то что нужно? Мы можем помочь сделать! 

От 350 руб. за реферат, низкие цены. Просто заполни форму и всё.

Спеши, предложение ограничено !



Что бы написать комментарий, вам надо войти в аккаунт, либо зарегистрироваться.

Страницу Назад

  Cодержание / Теория связи / Теория сложностей вычислительных процессов и структур. Экзамен. 4-й семестр. 5 билет

Вход в аккаунт:

Войти

Забыли ваш пароль?

Вы еще не зарегистрированы?

Создать новый Аккаунт


Способы оплаты:
Ю-Money WebMoney SMS оплата qiwi PayPal Крипто-валюты

И еще более 50 способов оплаты...
Гарантии возврата денег

Как скачать и покупать?

Как скачивать и покупать в картинках

Здесь находится аттестат нашего WM идентификатора 782443000980
Проверить аттестат


Сайт помощи студентам, без посредников!