Теория вероятностей и математическая статистика. Вариант №3
Состав работы
|
|
|
|
Работа представляет собой zip архив с файлами (распаковать онлайн), которые открываются в программах:
- Microsoft Word
Описание
Часть I: Теория вероятностей и математическая статистика
Задача 1.
В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
г) какова вероятность того, что из K2 случайно выбранных из партии деталей не более L2 окажется бракованными?
д) какова вероятность того, что из K3 случайно выбранных из партии деталей не менее L3 окажется НЕ бракованными?
е) из партии выбрано случайно K4 деталей, из них L4 оказалось бракованными; какова вероятность, что больше в выборке нет бракованных деталей?
ж) из партии выбрано K5 деталей, и которых не менее L5 оказалось бракованными; какова вероятность того, что в последующей выборке из K6деталей бракованных окажется не более L6 (предыдущая выборка в партию не возвращается)?
Задача 1.
В партии из N деталей ровно M бракованных. Дайте ответы на следующие вопросы (запишите формулы и сделайте вычисления с подробными объяснениями):
а) какова вероятность того, что наудачу выбранная деталь из партии окажется бракованной?
б) какова вероятность того, что наудачу выбранная деталь из партии окажется НЕ бракованной?
в) какова вероятность того, что из K1 случайно выбранных из партии деталей ровно L1 окажется бракованными?
г) какова вероятность того, что из K2 случайно выбранных из партии деталей не более L2 окажется бракованными?
д) какова вероятность того, что из K3 случайно выбранных из партии деталей не менее L3 окажется НЕ бракованными?
е) из партии выбрано случайно K4 деталей, из них L4 оказалось бракованными; какова вероятность, что больше в выборке нет бракованных деталей?
ж) из партии выбрано K5 деталей, и которых не менее L5 оказалось бракованными; какова вероятность того, что в последующей выборке из K6деталей бракованных окажется не более L6 (предыдущая выборка в партию не возвращается)?
Дополнительная информация
Вид работы: Курсовая работа
Оценка:Хорошо
Дата оценки: 07.10.2015
Оценка:Хорошо
Дата оценки: 07.10.2015
Похожие материалы
«Теория вероятностей и математическая статистика». Вариант №3
LiVolk
: 20 января 2022
Задание 1. Комбинаторика
Сколько 5-ти буквенных слов можно составить из букв слова
ФУРАЖ?
Задание 2. Основные теоремы
Изделие, изготовленное первым станком-автоматом, является бракованным с вероятностью 0,01, для второго станка эта вероятность равна 0,03. Четверть всех изделий изготовлены первым станком, остальные – вторым. Найти вероятность брака произвольно взятого изделия.
Задание 3. Случайные величины
Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной с
200 руб.
Теория вероятностей и математическая статистика. Вариант №3
IT-STUDHELP
: 18 ноября 2021
Задача 1
Вероятность появления поломок на каждой из соединительных линий равна . Какова вероятность того, что хотя бы две линии исправны?
Задача 2
В одной урне 5 белых шаров и 3 чёрных шаров, а в другой – 4 белых и 5 чёрных. Из первой урны случайным образом вынимают 2 шаров и опускают во вторую урну. После этого из второй урны также случайно вынимают 4 шаров. Найти вероятность того, что все шары, вынутые из второй урны, белые.
Задача 3
В типографии имеется печатных машин. Для каждой м
500 руб.
Теория вероятностей и математическая статистика. Вариант №3
89370803526
: 26 июня 2020
Вариант No 3
1. В семизначном телефонном номере неизвестны три последние цифры. Какова вероятность, что все они различны?
2. В первой урне находится два белых и четыре черных шара, во второй черных – четыре, а белый один. Из первой урны во вторую переложен один шар и, после перемешивания, из второй урны вытащен шар, который оказался черным. Какова вероятность, что во вторую урну был добавлен черный шар?
3. Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0
250 руб.
Теория вероятностей и математическая статистика. Вариант №3
SibGUTI2
: 7 апреля 2020
Задание 1. Комбинаторика
Вариант 3. Сколько 5-ти буквенных слов можно составить из букв слова ФУРАЖ?
Задание 2. Основные теоремы
Вариант 3. Изделие, изготовленное первым станком-автоматом, является бракованным с вероятностью 0,01 для второго станка эта вероятность равна 0,03. Четверть всех изделий изготовлены первым станком, остальные – вторым. Найти вероятность брака произвольно взятого изделия.
Задание 3. Случайные величины
Найти математическое ожидание, дисперсию и среднее квадратическое
250 руб.
Теория вероятностей и математическая статистика. Вариант №3
CrashOv
: 20 февраля 2020
Вариант №03
Задание 1. Комбинаторика
Сколько 5-ти буквенных слов можно составить из букв слова ФУРАЖ?
Задание 2. Основные теоремы.
Изделие, изготовленное первым станком-автоматом, является бракованным с вероятностью 0,01, для второго станка эта вероятность равна 0,03. Четверть всех изделий изготовлены первым станком, остальные – вторым. Найти вероятность брака произвольно взятого изделия
Задание 3. Случайные величины
Найти математическое ожидание, дисперсию и среднее квадратическое отклонение
350 руб.
Вариант №3.Теория вероятностей и математическая статистика
MK
: 20 мая 2016
1.В семизначном телефонном номере неизвестны три последние цифры. Какова вероятность, что все они различны?
2.В первой урне находится два белых и четыре черных шара, во второй черных – четыре, а белый один. Из первой урны во вторую переложен один шар и, после перемешивания, из второй урны вытащен шар, который оказался черным. Какова вероятность, что во вторую урну был добавлен черный шар?
3.Вероятность наступления события в каждом из одинаковых и независимых испытаний равна 0,2. Найти вероятнос
270 руб.
Теория вероятностей и математическая статистика. Вариант №3
СибирскийГУТИ
: 18 августа 2013
I. Задачи 521-530.
Три стрелка в одинаковых и независимых условиях произвели по одному выстрелу по одной и той же цели. Вероятность поражения цели первым стрелком равна 0,9, вторым - 0,8, третьим - 0,7. Найти вероятность того, что: а) только один из стрелков попал в цель; б) все три стрелка попали в цель.
II. Задачи No 541-550.
Случайная величина X задана функцией распределения F(x). Найти плотность распределения вероятностей, математическое ожидание и дисперсию случайной величины.
III. Зада
50 руб.
Теория вероятности и математическая статистика. Вариант №3
тантал
: 18 августа 2013
I. Задачи 521-530.
Три стрелка в одинаковых и независимых условиях произвели по одному выстрелу по одной и той же цели. Вероятность поражения цели первым стрелком равна 0,9, вторым - 0,8, третьим - 0,7. Найти вероятность того, что: а) только один из стрелков попал в цель; б) все три стрелка попали в цель.
II. Задачи No 541-550.
Случайная величина X задана функцией распределения F(x). Найти плотность распределения вероятностей, математическое ожидание и дисперсию случайной величины.
III. Задачи
70 руб.
Другие работы
Формы и методы оценки персонала
DocentMark
: 31 октября 2012
Общие подходы к аттестации сотрудников
Формы оценки персонала
Количественные методы оценки
Метод стандартных оценок
Экспертные оценки
Сравнительные методы
Качественные методы оценки
Диагностическая система оценки
5 руб.
Контрольная работа. Английский язык. Вариант: №7
krick
: 8 февраля 2017
He’d like to stay in Novosibirsk for a month.
To understand the difference between these interesting phenomena means to solve this actual problem.
It takes the rays of the sun eight minutes to get to the Earth.
Not to be damaged the device should be carefully operated.
He lost much money investing in unsuccessful companies.
100 руб.
Прогнозирование и оптимизация денежного потока
evelin
: 6 ноября 2013
Оглавление
1
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ 1
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ 1
Институт Бизнеса и Менеджмента Технологий 1
Курсовая работа 1
на тему: «Прогнозирование и оптимизация денежного потока» 1
Оглавление 2
Введение 3
Глава 1. Определение денежного потока 4
Глава 2. Методы прогнозирования денежного потока 8
Экстраполяционные методы 8
Статистические методы 9
Экспертный метод 10
Метод эвристического прогнозирования 16
Глава 3. Методы оптимизации денежно
10 руб.
Ответы на 60 вопросов по бухгалтерскому учету
Donbass773
: 19 января 2018
1. Сущность хозяйственного учета, его цели и задачи, виды хозяйственного учета
2. Система синтетического и аналитического учета, их значение и взаимосвязь
3. Порядок ведения кассовых операций в Российской Федерации, учет поступления и выдача наличных денежных средств
4. Учет процесса снабжения
5. Система измерителей, используемых в хозяйственно учете
6. Учет процесса производства
7. Бухгалтерский учет, его объекты и основные задачи
8. Учет процесса реализации (продажи)
9. Метод бухгалтерского уч
600 руб.