Теория сложности вычислительных процессов и структур. Лабораторная работа №4. Вариант №5

Состав работы

material.view.file_icon
material.view.file_icon
material.view.file_icon INPUT.TXT
material.view.file_icon lab4.cpp
material.view.file_icon LAB4.EXE
material.view.file_icon LAB4.OBJ
material.view.file_icon OUTPUT.TXT
material.view.file_icon Отчет.doc
Работа представляет собой rar архив с файлами (распаковать онлайн), которые открываются в программах:
  • Программа для просмотра текстовых файлов
  • Microsoft Word

Описание

Лабораторная 4.
Задание

Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
Номер варианта выбирается по последней цифре пароля.
Вариант 5
Вершина 4.
0 0 0 23 0 0
0 0 0 0 2 0
0 0 0 0 27 0
23 0 0 0 31 23
0 2 27 31 0 41
0 0 0 23 41 0

Дополнительная информация

Уважаемый студент, дистанционного обучения,
Оценена Ваша работа по предмету: Теория сложности вычислительных процессов и структур
Вид работы: Лабораторная работа 4
Оценка:Зачет
Дата оценки: 17.04.2017
Рецензия:Уважаемый,
замечаний нет.
Галкина Марина Юрьевна
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №5.
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
User zhekaersh : 5 марта 2015
40 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №5.
Лабораторная работа №4 по дисциплине: Теория сложности вычислительных процессов и структур. Вариант №5
Лабораторная работа №4 Задание Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры. Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
User IT-STUDHELP : 21 июня 2017
48 руб.
Лабораторная работа №4 по дисциплине: Теория сложности вычислительных процессов и структур. Вариант №5
Лабораторная работа № 4 по дисциплине "Теория сложностей вычислительных процессов и структур"
Лабораторная работа №3 Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Вариант 3
User 1231233 : 31 января 2012
23 руб.
Теория сложностей вычислительных процессов и структур
Задача 1. Лестница У лестницы n ступенек, пронумерованных числами 1, 2,.. , n снизу вверх. На каждой ступеньке написано число. Начиная с подножия лестницы (его можно считать ступенькой с номером 0), требуется взобраться на самый верх (ступеньку с номером n). За один шаг можно подниматься на одну или на две ступеньки. После подъёма числа, записанные на посещённых ступеньках, складываются. Нужно подняться по лестнице так, чтобы сумма этих чисел была как можно больше. Задача 2. Ход конём Дана прям
User NikolaSuprem : 9 февраля 2021
300 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №4.
Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла.
User zhekaersh : 5 марта 2015
40 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа №4. Вариант №4.
Теория сложности вычислительных процессов и структур. Лабораторная работа 4. Вариант 10.
Лабораторная работа №4 Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирае
User Bodibilder : 29 мая 2019
28 руб.
Теория сложностей вычислительных процессов и структур. Лабораторная работа 4. Вариант 1.
Задание Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбирается по последней цифре пароля. Вариант 1 Вершина 0.
User nik200511 : 7 июня 2018
24 руб.
Лабораторная работа № 4 Теория сложностей вычислительных процессов и структур. Вариант 0
Лабораторная работа № 4 Графы. Нахождение кратчайшего расстояния между двумя вершинами с помощью алгоритма Дейкстры Написать программу, которая по алгоритму Дейкстры находит кратчайшее расстояние от указанной вершины до всех остальных вершин связного взвешенного неориентированного графа, имеющего 6 вершин (нумерация вершин начинается с 0). Граф задан матрицей весов дуг, соединяющих всевозможные пары вершин (0 означает, что соответствующей дуги нет). Данные считать из файла. Номер варианта выбир
User Despite : 14 мая 2015
60 руб.
Задача по электротехнике. Вариант №2
Задача 3(2). Трехфазный асинхронный двигатель с фазным ротором, сопротивление фаз обмоток которого R1, R2, X1, X2, соединен треугольником и работает при напряжении Uном с частотой f = 50 Гц. Число витков на фазу обмоток 1, 2, число пар полюсов p. Определить: пусковые токи статора и ротора; пусковой вращающий момент; коэффициент мощности при пуске двигателя без пускового реостата; значение сопротивления пускового реостата, обеспечивающего максимальный пусковой момент; величину максимального пуско
User anderwerty : 30 декабря 2015
20 руб.
Резьбовое соединение. Задание 74 - Вариант 6
С.К. Боголюбов. Индивидуальные задания по курсу черчения. Резьбовое соединение. Задание 74 - Вариант 6 Вид спереди заменить фронтальным разрезом. При выполнении задания допустимо соединить половину разреза с половиной вида. В состав работы входит: Чертеж; 3D модели. Выполнено в программе Компас + чертеж в PDF.
User .Инженер. : 4 октября 2025
100 руб.
Резьбовое соединение. Задание 74 - Вариант 6 promo
Схемотехника телекоммут.ус-в. часть1-я. Вариант №7. Лабораторная работа №2
Исследование резисторного каскада широкополосного усилителя на полевом транзисторе Исходные данные для предварительного расчета: Варианты значений выходной разделительной емкости (С2) и емкости нагрузки С4, указанные в таблице 2, выбираются по последней цифре пароля. Таблица 2 – Варианты №7 значений емкостей С2, нФ 30 С4, пФ 200 методичка за 2013г.
User DEKABR1973 : 7 марта 2018
100 руб.
Познание природы и логика
По таланту, богатству полученных результатов и широте мышления немецкий математик Давид Гильберт (1862-1943) был уникальной фигурой даже среди самых блестящих математических умов. Он оставил заметный след во многих областях математики, создал новые направления математических исследований и обогатят культуру XX века важными и глубокими работами, посвященными теории познания, роли и месту математики в системе современной науки, природе математической истины, аксиоматическому методу и взаимосвязи т
User Elfa254 : 9 августа 2013
up Наверх