Метрология. Лабораторная работа №3.4. Вариант 01.
Состав работы
|
|
Работа представляет собой файл, который можно открыть в программе:
- Microsoft Word
Описание
1. Цель работы
1.1. Изучить:
1.1.1 Параметры переменных напряжений и токов;
1.1.2 Методы измерения параметров переменных напряжений и токов;
1.1.3 Принцип действия, устройство и метрологические характеристики электронных вольтметров;
1.1.4 Особенности измерения напряжения электронными вольтметрами переменного тока;
1.1.5 Источники погрешности при измерении электронными вольтметрами.
1.2. Получить навыки работы с измерительными приборами.
1.3.Приобрести умение обрабатывать и оформлять результаты измерений, выполненных с помощью электронных вольтметров.
2. Программа лабораторной работы.
2.1. Изучение основных метрологических характеристик электронных вольтметров.
2.2. Исследование частотных характеристик вольтметров переменного тока
2.3. Измерение параметров напряжения сигнала произвольной формы:
• среднеквадратическое значение;
• средневыпрямленное значение;
• пиковое значение.
2.4. Измерение значений коэффициентов амплитуды, формы и усреднения сигналов различной формы.
3. Перечень лабораторного оборудования.
3.1. Основное оборудование.
Аналоговые электронные вольтметры переменного тока:
3.1.1 средневыпрямленного значения;
3.1.2 пикового значения;
3.1.3 среднеквадратического значения;
3.2. Вспомогательные приборы.
3.2.1 Генератор сигналов специальной формы (функциональный генератор)
3.2.2 Электронно-лучевой осциллограф.
4. Выполнение лабораторной работы
4.1 Лабораторный стенд представляет собой компьютерную модель LabVIEW, отображаемую на экране персонального компьютера.
На стенде находятся модели:
Электромагнитного (1) и электродинамического (2) вольтметров; электронных милливольтметров средневыпрямленного (4) и среднеквадратического (5) значения; электронного осциллографа (6); генератора сигналов специальной формы (7)
Рис.2. Модель лабораторного стенда на экране компьютера.
На экране представлены приборы:
1-электромагнитный вольтметр;
2-электродинамический вольтметр;
3-электронный вольтметр с пиковым детектором;
4-электронный вольтметр средневыпрямленного значения;
5-электронный вольтметр среднеквадратического значения;
6-электронный осциллограф;
7-генератор сигналов специальной формы.
Модели электромагнитного и электродинамического вольтметров используются при моделировании процесса прямых измерений среднеквадратического значения напряжения сигнала синусоидальной формы методом непосредственной оценки. Модели электронных аналоговых милливольтметров средневыпрямленного и среднеквадратического значения используют для прямых измерений соответственно средневыпрямленного и среднеквадратического значения напряжения в цепях переменного тока любой формы методом непосредственной оценки. Модель электронного осциллографа используют для измерения параметров сигналов переменного тока произвольной формы.
Модель генератора сигналов специальной формы используют в качестве источника сигналов синусоидальной, прямоугольной (меандр), треугольной (двухполярной) и пилообразной формы, с плавной регулировкой пикового значения и частоты выходного сигнала.
4.2. Исследование частотных характеристик вольтметров переменного тока
Зависимость показаний электромагнитного и электродинамического вольтметров от частоты исследуется с использованием осциллографа в качестве индикатора формы сигнала и пикового значения напряжения. Измерения проводятся в диапазоне частот от 20 Гц до 20 кГц.
В качестве образцового используется электронный милливольтметр среднеквадратического значения.
Амплитуда сигнала на выходе генератора устанавливается так, чтобы показание электродинамического вольтметра равнялось 2,0 В.
Измерения проводятся на частотах:
60, 400 Гц; 1, 2, 3, 5, 7, 10, 12, 15, 20 кГц.
Сведения о классе точности вольтметров и результаты измерений занесены в таблицу.
Предел допускаемой абсолютной погрешности электронного милливольтметра:
Абсолютные погрешности электромагнитного и электродинамического вольтметров Δ1 оцениваем как разности между их показаниями и показанием электронного вольтметра.
Результирующий предел допускаемой абсолютной погрешности рассчитываем по формуле:
Предел допускаемой относительной погрешности электронного милливольтметра:
4.3. Измерение параметров напряжения сигнала произвольной формы
При выполнении задания используются три электронных вольтметра с различными преобразователями.
1) Электронный аналоговый вольтметр измеряет пиковое значения напряжения сигнала любой формы. Шкала проградуирована в средневыпрямленных значениях гармонического сигнала, следовательно показание прибора:
4.4. Измерение значения коэффициента формы сигналов синусоидальной и треугольной формы.
Измерение значений коэффициентов формы Кф осуществляется косвенным путем согласно выражению:
Kф=U/Uср.в
U – среднеквадратическое, Uср.в – средневыпрямленное значения напряжений.
Для определения коэффициента формы используем измеренные параметры сигналов из таблицы 2 . Результаты обработки помещены в таблицу 3.
Оценку погрешности измерения параметра Kф выполняем по методике оценки погрешности косвенных измерений:
1.1. Изучить:
1.1.1 Параметры переменных напряжений и токов;
1.1.2 Методы измерения параметров переменных напряжений и токов;
1.1.3 Принцип действия, устройство и метрологические характеристики электронных вольтметров;
1.1.4 Особенности измерения напряжения электронными вольтметрами переменного тока;
1.1.5 Источники погрешности при измерении электронными вольтметрами.
1.2. Получить навыки работы с измерительными приборами.
1.3.Приобрести умение обрабатывать и оформлять результаты измерений, выполненных с помощью электронных вольтметров.
2. Программа лабораторной работы.
2.1. Изучение основных метрологических характеристик электронных вольтметров.
2.2. Исследование частотных характеристик вольтметров переменного тока
2.3. Измерение параметров напряжения сигнала произвольной формы:
• среднеквадратическое значение;
• средневыпрямленное значение;
• пиковое значение.
2.4. Измерение значений коэффициентов амплитуды, формы и усреднения сигналов различной формы.
3. Перечень лабораторного оборудования.
3.1. Основное оборудование.
Аналоговые электронные вольтметры переменного тока:
3.1.1 средневыпрямленного значения;
3.1.2 пикового значения;
3.1.3 среднеквадратического значения;
3.2. Вспомогательные приборы.
3.2.1 Генератор сигналов специальной формы (функциональный генератор)
3.2.2 Электронно-лучевой осциллограф.
4. Выполнение лабораторной работы
4.1 Лабораторный стенд представляет собой компьютерную модель LabVIEW, отображаемую на экране персонального компьютера.
На стенде находятся модели:
Электромагнитного (1) и электродинамического (2) вольтметров; электронных милливольтметров средневыпрямленного (4) и среднеквадратического (5) значения; электронного осциллографа (6); генератора сигналов специальной формы (7)
Рис.2. Модель лабораторного стенда на экране компьютера.
На экране представлены приборы:
1-электромагнитный вольтметр;
2-электродинамический вольтметр;
3-электронный вольтметр с пиковым детектором;
4-электронный вольтметр средневыпрямленного значения;
5-электронный вольтметр среднеквадратического значения;
6-электронный осциллограф;
7-генератор сигналов специальной формы.
Модели электромагнитного и электродинамического вольтметров используются при моделировании процесса прямых измерений среднеквадратического значения напряжения сигнала синусоидальной формы методом непосредственной оценки. Модели электронных аналоговых милливольтметров средневыпрямленного и среднеквадратического значения используют для прямых измерений соответственно средневыпрямленного и среднеквадратического значения напряжения в цепях переменного тока любой формы методом непосредственной оценки. Модель электронного осциллографа используют для измерения параметров сигналов переменного тока произвольной формы.
Модель генератора сигналов специальной формы используют в качестве источника сигналов синусоидальной, прямоугольной (меандр), треугольной (двухполярной) и пилообразной формы, с плавной регулировкой пикового значения и частоты выходного сигнала.
4.2. Исследование частотных характеристик вольтметров переменного тока
Зависимость показаний электромагнитного и электродинамического вольтметров от частоты исследуется с использованием осциллографа в качестве индикатора формы сигнала и пикового значения напряжения. Измерения проводятся в диапазоне частот от 20 Гц до 20 кГц.
В качестве образцового используется электронный милливольтметр среднеквадратического значения.
Амплитуда сигнала на выходе генератора устанавливается так, чтобы показание электродинамического вольтметра равнялось 2,0 В.
Измерения проводятся на частотах:
60, 400 Гц; 1, 2, 3, 5, 7, 10, 12, 15, 20 кГц.
Сведения о классе точности вольтметров и результаты измерений занесены в таблицу.
Предел допускаемой абсолютной погрешности электронного милливольтметра:
Абсолютные погрешности электромагнитного и электродинамического вольтметров Δ1 оцениваем как разности между их показаниями и показанием электронного вольтметра.
Результирующий предел допускаемой абсолютной погрешности рассчитываем по формуле:
Предел допускаемой относительной погрешности электронного милливольтметра:
4.3. Измерение параметров напряжения сигнала произвольной формы
При выполнении задания используются три электронных вольтметра с различными преобразователями.
1) Электронный аналоговый вольтметр измеряет пиковое значения напряжения сигнала любой формы. Шкала проградуирована в средневыпрямленных значениях гармонического сигнала, следовательно показание прибора:
4.4. Измерение значения коэффициента формы сигналов синусоидальной и треугольной формы.
Измерение значений коэффициентов формы Кф осуществляется косвенным путем согласно выражению:
Kф=U/Uср.в
U – среднеквадратическое, Uср.в – средневыпрямленное значения напряжений.
Для определения коэффициента формы используем измеренные параметры сигналов из таблицы 2 . Результаты обработки помещены в таблицу 3.
Оценку погрешности измерения параметра Kф выполняем по методике оценки погрешности косвенных измерений:
Дополнительная информация
Работа поправлена в соответствии с замечаниями преподавателя и зачтена:
1.Верно округлить погрешность (неопределенность). Значащих цифр в окончательном результате расчета погрешности должно быть не более двух, путем округления в большую сторону, см. раздел 5, п. 8, КЗ. (контрольное задание).
Погрешность принято (ГСИ МИ 1317- 2004.) округлять в большую сторону (см. КЗ. (контрольное задание) раздел 5, п. 8) количество значащих цифр не более двух, а погрешность округления не более 5%.
Если погрешность округления неопределенности более 5%, то округлять неопределенность в большую сторону нельзя. Первоначально абсолютную неопределенность округляют в большую сторону. Затем необходимо вычислить погрешность округления абсолютной неопределенности в большую сторону, если она (погрешности округления) будет более 5%, нужно округлить абсолютную неопределенность в меньшую сторону.
Значащими цифрами называются все верные цифры числа, кроме нулей, стоящих впереди числа.
2.Указать единицы измерения.
Рецензент: доцент каф. ПДСиМ Запасный И.Н.
Могу исправить подобные замечания. Пишите на bobvtyz@mail.ru
1.Верно округлить погрешность (неопределенность). Значащих цифр в окончательном результате расчета погрешности должно быть не более двух, путем округления в большую сторону, см. раздел 5, п. 8, КЗ. (контрольное задание).
Погрешность принято (ГСИ МИ 1317- 2004.) округлять в большую сторону (см. КЗ. (контрольное задание) раздел 5, п. 8) количество значащих цифр не более двух, а погрешность округления не более 5%.
Если погрешность округления неопределенности более 5%, то округлять неопределенность в большую сторону нельзя. Первоначально абсолютную неопределенность округляют в большую сторону. Затем необходимо вычислить погрешность округления абсолютной неопределенности в большую сторону, если она (погрешности округления) будет более 5%, нужно округлить абсолютную неопределенность в меньшую сторону.
Значащими цифрами называются все верные цифры числа, кроме нулей, стоящих впереди числа.
2.Указать единицы измерения.
Рецензент: доцент каф. ПДСиМ Запасный И.Н.
Могу исправить подобные замечания. Пишите на bobvtyz@mail.ru
Похожие материалы
Метрология, стандартизация и сертификация. Лабораторная работа № 3. ВАРИАНТ №01
shkyworker
: 27 октября 2014
1. Цель работы
1.1. Изучить:
1.1.1 Параметры переменных напряжений и токов;
1.1.2 Методы измерения параметров переменных напряжений и токов;
1.1.3 Принцип действия, устройство и метрологические характеристики электронных вольтметров;
1.1.4 Особенности измерения напряжения электронными вольтметрами переменного тока;
1.1.5 Источники погрешности при измерении электронными вольтметрами.
1.2. Получить навыки работы с измерительными приборами.
1.3.Приобрести умение обрабатывать и оформлять результаты
150 руб.
Контрольная работа. Метрология. Вариант №01
sxesxe
: 21 января 2018
Задача No 1
Для определения расстояния до места повреждения кабельной линии связи был использован импульсный рефлектометр. С его помощью получено n (результатов единичных измерений) расстояния до места повреждения.
Считая, что случайная составляющая погрешности рефлектометра распределена по нормальному закону, выполнить следующие задания.
1.Результат измерения с многократными наблюдениями расстояния до места повреждения кабеля .
2. Оценку среднего квадратического отклонения (СКО) погрешности
150 руб.
Лабораторная работа №3 по дисциплине: Информатика. Вариант 01
Roma967
: 13 августа 2019
Тема: «Типовые и бестиповые подпрограммы-функции»
Задание
В соответствии с индивидуальным заданием, номер которого совпадает с двумя последними цифрами вашего пароля, разработать алгоритмы и программу на языке Си с использованием разработанных автором функций.
Вариант №1
1. Для каждого пункта задания написать подпрограмму-функцию
- сформировать целочисленную матрицу А(NхN);
- вывести на экран значения матрицы, расположив каждую строку матрицы на строку экрана;
- найти в матрице ко
300 руб.
Метрология. Лабораторная работа №3. Вариант №13.
Mental03
: 18 мая 2017
Лабораторная работа 3 по метрологии. Вариант 13.
Измерение напряжения электрических сигналов
1. Цель работы
1.1. Изучить:
1.1.1 Параметры переменных напряжений и токов;
1.1.2 Методы измерения параметров переменных напряжений и токов;
1.1.3 Принцип действия, устройство и метрологические характеристики электронных вольтметров;
1.1.4 Особенности измерения напряжения электронными вольтметрами переменного тока;
1.1.5 Источники погрешности при измерении электронными вольтметрами.
1.2. Получить нав
Лабораторная работа № 3 по метрологии. Вариант №20
Despite
: 14 мая 2015
Лабораторная работа 3: Параметры переменных напряжений и токов;
1. Цель работы
1.1. Изучить:
1.1.1 Параметры переменных напряжений и токов;
1.1.2 Методы измерения параметров переменных напряжений и токов;
1.1.3 Принцип действия, устройство и метрологические характеристики электронных вольтметров;
1.1.4 Особенности измерения напряжения электронными вольтметрами переменного тока;
1.1.5 Источники погрешности при измерении электронными вольтметрами.
1.2. Получить навыки работы с измерительными приб
60 руб.
Метрология. Лабораторная работа № 3. Вариант № 14
zhekaersh
: 4 января 2013
Лабораторная работа 3.4 Тема: Измерение напряжения электрических сигналов
Цель работы
Изучить:
Параметры переменных напряжений и токов;
Методы измерения параметров переменных напряжений и токов;
Принцип действия, устройство и метрологические характеристики электронных вольтметров;
Особенности измерения напряжения электронными вольтметрами переменного тока;
Источники погрешности при измерении электронными вольтметрами.
Получить навыки работы с измерительными приборами.
Приобрести умение обрабат
80 руб.
Метрология. Лабораторная работа № 3. Вариант 15
kisa7
: 21 июля 2012
1. Цель работы
1.1. Изучить:
1.1.1 Параметры переменных напряжений и токов;
1.1.2 Методы измерения параметров переменных напряжений и токов;
1.1.3 Принцип действия, устройство и метрологические характеристики электронных вольтметров;
1.1.4 Особенности измерения напряжения электронными вольтметрами переменного тока;
1.1.5 Источники погрешности при измерении электронными вольтметрами.
1.2. Получить навыки работы с измерительными приборами.
1.3.Приобрести умение обрабатывать и оформлять результаты
100 руб.
Лабораторная работа №1,2,3,4,5. Метрология. Вариант №01
sxesxe
: 21 января 2018
Лабораторная работа № 1.4
по дисциплине: Метрология, стандартизация и сертификация
“Упрощенная процедура обработки результатов прямых измерений с многократными наблюдениями”»
Лабораторная работа №2.2
по дисциплине: Метрология, стандартизация и сертификация
«Поверка аналогового измерительного прибора»
ЛАБОРАТОРНАЯ РАБОТА №3.4
по дисциплине:«Метрология стандартизация и сертификация
в инфокоммуникациях (МС и С в ИК)»
Измерение напряжения электрических сигналов
ЛАБОРАТОРНАЯ РАБОТА №3.5
по
500 руб.
Другие работы
Повышение эффективности производства молока на базовом предприятии на примере СПК ОЗП "Октябрь"
alfFRED
: 10 ноября 2013
Введение
1. Понятие и сущность экономической эффективности сельского хозяйства
1.1 Народно-хозяйственное значение повышения эффективности
производства молока
1.2 Роль, значение и организационная структура молочного подкомплекса
1.3 Формирование и функционирование рынка молока
1.4 Развитие, размещение и эффективность производства молока
1.5 Особенности развития отрасли молочного скотоводства за рубежом
2. Анализ и оценка эффективности производства молока в базовом предприятии
2.1 П
10 руб.
Личностная эффективность. 5-е задание.
studypro3
: 27 марта 2018
Уважаемый студент, для выполнения этого задания Вам необходимо прочитать статью Архангельского Г. «Формула времени» представленной в разделе «Дополнительная литература». Напишите эссе.
Работу нужно оформить в виде презентации.
Требования к презентации
1. Презентация не должна быть скучной, монотонной, громоздкой (оптимально это 8-10 слайда).
2. На титульном слайде указываются данные автора (ФИО и номер группы), название материала, дата разработки.
3. На последнем слайде указывается перечень
350 руб.
Кейс задание 1. Вариант №5. Бухгалтерский учет.
studypro3
: 24 июня 2019
Кейс-задание 1
Вариант 5
Ситуация 1.
На основании данных Бухгалтерского баланса (Приложение Б), Отчета о финансовых результатах (Приложение В) ОАО «Капитал» дать оценку характера финансовой устойчивости анализируемого предприятия на основе анализа обеспеченности запасов устойчивыми источниками финансирования (метод анализа, основанный на абсолютных показателях). Определить, к какому типу финансовой устойчивости, исходя из трехкомпонентного показателя, относится ОАО «Капитал» в 2013 году.
Ситуаци
400 руб.
Крышка. Задание 66. Вариант 17
lepris
: 20 октября 2022
Крышка. Задание 66. Вариант 17
Вариант 17. Крышка
По приведенным изображениям детали построить вид сверху и выполнить необходимые разрезы.
Чертеж и 3д модель (все на скриншотах изображено) выполнены в AutoCAD 2013 возможно открыть с 2013 по 2022 и выше версиях.
Также открывать и просматривать чертежи и 3D-модели, выполненные в AutoCAD-е можно просмоторщиком DWG TrueView 2022.
Помогу с другими вариантами.Пишите в Л/С.
150 руб.